Skip to main content

Advertisement

Log in

Experimental Validation of Numerical Simulations of a New-Generation NiTi Endodontic File Under Bending

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The superelasticity of NiTi shape memory alloy has been used in endodontics since the 1990s. To study the mechanical behavior of endodontic instruments, a traditional approach consists in experimental investigations. However, finite element analysis constitutes another way to assess their mechanical behavior and to facilitate their design. The main aim of this study is to compare experimental and numerical bending results on different structures (NiTi wire, spreader, and instruments) to estimate the reliability of the finite element simulations. These investigations were carried out as follows. Firstly, experimental material parameters identification was performed using NiTi wires. These parameters were implemented in an appropriate NiTi model. Bending was numerically applied to the meshed structures generated by the finite element method. Experimental tests were performed on real structures under bending, with exactly the same loading, in order to compare experimental and numerical results. These results were in good agreement for each of the considered structures. This enabled the validation of the simulation results and the use of simulations to design new endodontic instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Otsuka and C.-M. Wayman, Shape Memory Materials, Cambridge University Press, Cambridge, 1999

    Google Scholar 

  2. D. Celik, T. Tasdemir, and K. Er, Comparative Study of Six Rotary Nickel-Titanium Systems and Hand Instrumentation for Root Canal Preparation in Severely Curved Root Canals of Extracted Teeth, J. Endod., 2013, 39(2), p 278–282

    Article  Google Scholar 

  3. M. Hülsmann, O.A. Peters, and P.M.H. Dummer, Mechanical Preparation of Root Canals, Shaping Goals, Techniques and Means, Endod. Top., 2005, 10, p 30–76

    Article  Google Scholar 

  4. B. Sattapan, G.J. Nervo, J.E. Palamara, and H.H. Messer, Defects in Rotary Nickel-Titanium Files After Clinical Use, J. Endod., 2000, 26, p 61–65

    Google Scholar 

  5. I.D. Çapar and H. Arslan, A Review of Instrumentation Kinematics of Engine-Driven Nickel-Titanium Instruments, Int. Endod. J., 2016, 49(2), p 119–135. https://doi.org/10.1111/iej.12432

    Article  Google Scholar 

  6. V. Franco, C. Fabiani, S. Tashieri, A. Malentacca, M. Bortolin, and M. Del Fabro, Investigation on the Shaping Ability of Nickel-Titanium Files When Used with a Reciprocation Motion, J. Endod., 2011, 37, p 1398–1401

    Article  Google Scholar 

  7. G. Yared, Canal Preparation Using Only One NiTi Rotary Instrument: Preliminary Observations, Int. Endod. J., 2008, 41, p 339–344

    Article  CAS  Google Scholar 

  8. R. Castello-Escriva, T. Alegre-Domingo, V. Faus-Matoses, S. Roman-Richon, and V.J. Faus-Llacer, In vitro Comparison of Cyclic Fatigue Resistance of ProTaper WaveOne, and Twisted Files, J. Endod., 2012, 38, p 1521–1524

    Article  Google Scholar 

  9. G. Gavini, C.L. Caldeira, E. Akisue, G.T. Candeiro, and D.A. Kawakami, Resistance to Flexural Fatigue of Reciproc R25 Files Under Continuous Rotation and Reciprocating Movement, J. Endod., 2012, 38, p 684–687

    Article  Google Scholar 

  10. S. Burklein, S. Benten, and E. Schafer, Shaping Ability of Different Single-File Systems in Severely Curved Root Canals of Extracted Teeth, Int. Endod. J., 2013, 46, p 590–597

    Article  CAS  Google Scholar 

  11. A.M. Elnaghy and S.E. Elsaka, Torsion and Bending Properties of OneShape and WaveOne Instruments, J. Endod., 2015, 41(4), p 544–547. https://doi.org/10.1016/j.joen.2014.11.010 (Epub 2014 Dec 18)

    Article  Google Scholar 

  12. S.E. Saber, M.M. Nagy, and E. Schafer, Comparative Evaluation of the Shaping Ability of WaveOne, c, Int. Endod. J., 2014, 48, p 109–114

    Article  Google Scholar 

  13. S.E. Elsaka and A.M. Elnaghy, Cyclic Fatigue Resistance of OneShape and WaveOne Instruments Using Different Angles of Curvature, Dent. Mater. J., 2015, 34(3), p 358–363. https://doi.org/10.4012/dmj.2014-252 (Epub 2015 Apr 23)

    Article  CAS  Google Scholar 

  14. E. Karataş, H. Arslan, M. Büker, F. Seçkin, and I.D. Çapar, Effect of Movement Kinematics on the Cyclic Fatigue Resistance of Nickel-Titanium Instruments, Int. Endod. J., 2016, 49(4), p 361–364. https://doi.org/10.1111/iej.12453 (Epub 2015 Apr 16)

    Article  Google Scholar 

  15. Z. Wang, W. Zhang, and X. Zhang, Cyclic Fatigue Resistance and Force Generated by OneShape Instruments during Curved Canal Preparation, PLoS ONE, 2016, 11(8), p e0160815. https://doi.org/10.1371/journal.pone.0160815

    Article  CAS  Google Scholar 

  16. N. Bonessio, E.S. Pereira, G. Lomiento, A. Arias, M.G. Bahia, V.T. Buono, and O.A. Peters, Validated Finite Element Analyses of WaveOne Endodontic Instruments: A Comparison Between M-Wire and NiTi Alloys, Int. Endod. J., 2015, 48(5), p 441–450. https://doi.org/10.1111/iej.12333 (Epub 2014 Jul 12)

    Article  CAS  Google Scholar 

  17. G.P. Kumar and L. Mathew, Self-expanding aortic valve stent-material optimization, Comput. Biol. Med., 2012, 42(11), p 1060–1063. https://doi.org/10.1016/j.compbiomed.2012.08.007 (Epub 2012 Sep 14)

    Article  Google Scholar 

  18. F. Nematzadeh and S.K. Sadrnezhaad, Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis, J. Mater. Eng. Perform., 2013, 22, p 3228. https://doi.org/10.1007/s11665-013-0635-7

    Article  CAS  Google Scholar 

  19. M. Kromka-Szydek, M. Jedrusik-Pawłowska, G. Milewski, Z. Lekston, T. Cieślik, and J. Drugacz, Numerical Analysis of Displacements of Mandible Bone Parts Using Various Elements for Fixation of Subcondylar Fractures, Acta Bioeng. Biomech., 2010, 12(1), p 11–18

    Google Scholar 

  20. E. Berutti, G. Chiandussi, I. Gaviglio, and A. Iba, Comparative Analysis of Torsional and Bending Stresses in Two Mathematical Models of Nickel Titanium Rotary Instruments: Protaper Versus Profile, J. Endod., 2003, 29(1), p 15–19

    Article  Google Scholar 

  21. Y.L. Turpin, F. Chagneau, O. Bartier, G. Cathelineau, and J.M. Vulcain, Impact of Torsional and Bending Inertia on Root Canal Instruments, J. Endod., 2001, 27(5), p 333–336

    Article  CAS  Google Scholar 

  22. Y.L. Turpin, F. Chagneau, and J.M. Vulcain, Impact of Two Theoretical Cross-Sections on Torsional and Bending Stresses of Nickel Titanium Root Canal Instrument Models, J. Endod., 2000, 26(7), p 414–417

    Article  CAS  Google Scholar 

  23. X. Xu, M. Eng, Y. Zheng, and D. Eng, Comparative Study of Torsional and Bending Properties for Six Models of Nickel-Titanium Root Canal Instruments with Different Cross-Sections, J. Endod., 2006, 32, p 372–375

    Article  Google Scholar 

  24. R. Arbab Chirani, V. Chevalier, S. Arbab Chirani, and S. Calloch, Comparative Analysis of Torsional and Bending Behavior Through Finite-Element Models of Five NiTi Endodontic Instruments, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 111(1), p 115–121

    Article  Google Scholar 

  25. S.H. Baek, C.J. Lee, A. Versluis, B.M. Kim, W. Lee, and H.C. Kim, Comparison of Torsional Stiffness of Nickel-Titanium Rotary Files with Different Geometric Characteristics, J. Endod., 2011, 37, p 1283–1286

    Article  Google Scholar 

  26. R. He and J. Ni, Design Improvement and Failure Reduction of Endodontic Files Through Finite Element Analysis: Application to V-Taper File Designs, J. Endod., 2010, 36(9), p 1552–1557

    Article  Google Scholar 

  27. T.O. Kim, G.S.P. Cheung, J.M. Lee, B.M. Kim, B. Hur, and H.C. Kim, Stress Distribution of Three NiTi Rotary Files Under Bending and Torsional Conditions Using a Mathematic Analysis, Int. Endod. J., 2009, 42, p 14–21

    Article  CAS  Google Scholar 

  28. E.W. Zhang, G.S.P. Cheung, and Y.F. Zheng, Influence of Cross-sectional Design and Dimension on Mechanical Behavior of Nickel-Titanium Instruments Under Torsion and Bending: A Numerical Analysis, J. Endod., 2010, 36(8), p 1394–1398

    Article  Google Scholar 

  29. M.I. El-Anwar, S.A. Yousief, E.M. Kataia, and T.M. El-Wahab, Finite Element Study on Continuous Rotating Versus Reciprocating Nickel-Titanium Instruments, Braz. Dent. J., 2016, 27(4), p 436–441. https://doi.org/10.1590/0103-6440201600480

    Article  Google Scholar 

  30. D. Montalvao and F.S. Alcada, Numeric Comparison of the Static Mechanical Behavior Between Profile GT and Profile GT Series X Rotary Nickel-Titanium Files, J. Endod., 2011, 37(8), p 1158–1161

    Article  Google Scholar 

  31. L.D.A. Santos, M.G. Bahia, E.B. de Las Casas, and V.T. Buono, Comparison of the Mechanical Behavior Between Controlled Memory and Superelastic Nickel-Titanium Files Via Finite Element Analysis, J. Endod., 2013, 39(11), p 1444–1447. https://doi.org/10.1016/j.joen.2013.07.030 (Epub 2013 Sep 8)

    Article  Google Scholar 

  32. L.D.A. Santos, P.D. Resende, M.G. Bahia, and V.T. Buono, Effects of R-Phase on Mechanical Responses of a Nickel-Titanium Endodontic Instrument: Structural Characterization and Finite Element Analysis, Sci. World J., 2016, https://doi.org/10.1155/2016/7617493

    Article  Google Scholar 

  33. S. Necchi, S. Taschieri, L. Petrini, and F. Migliavacca, Mechanical Behavior of Nickel-Titanium Rotary Endodontic Instruments in Simulated Clinical Conditions: A Computational Study, Int. Endod. J., 2008, 41, p 939–949

    Article  CAS  Google Scholar 

  34. S. Necchi, L. Petrini, S. Taschieri, and F. Migliavacca, A Comparative Computational Analysis of the Mechanical Behavior of Two Nickel-Titanium Rotary Endodontic Instruments, J. Endod., 2010, 36(8), p 1380–1384

    Article  Google Scholar 

  35. H.C. Kim, H.J. Kim, C.J. Lee, B.M. Kim, J.K. Park, and A. Versluis, Mechanical Response of Nickel-Titanium Instruments with Different Cross-Sectional Designs During Shaping of Simulated Curved Canals, Int. Endod. J., 2009, 42, p 593–602

    Article  CAS  Google Scholar 

  36. H.C. Kim, M.H. Lee, J. Yum, H.J. Kim, A. Versluis, C.J. Lee, and B.M. Kim, Potential Relationship Between Design of Nickel-Titanium Rotary Instruments and Vertical Root Fracture, J. Endod., 2010, 36(7), p 1195–1198

    Article  Google Scholar 

  37. M.H. Lee, A. Versluis, B.M. Kim, C.J. Lee, B. Hur, and H.C. Kim, Correlation Between Experimental Cyclic Fatigue Resistance and Numerical Stress Analysis for Nickel-Titanium Rotary Files, J. Endod., 2011, 37(8), p 1152–1157

    Article  Google Scholar 

  38. V. Legrand, S. Moyne, L. Pino, S. Arbab Chirani, S. Calloch, V. Chevalier, and R. Arbab Chirani, Mechanical Behavior of a NiTi Endodontic File During Insertion in an Anatomic Root Canal Using Numerical Simulations, J. Mater. Eng. Perform., 2015, 24, p 4941. https://doi.org/10.1007/s11665-015-1799-0

    Article  CAS  Google Scholar 

  39. L.D.A. Santos, J.B. López, E.B. de Las Casas, M.G. de Azevedo Bahia, and V.T. Buono, Mechanical Behavior of Three Nickel-Titanium Rotary Files: A Comparison of Numerical Simulation with Bending and Torsion Tests, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 37, p 258–263. https://doi.org/10.1016/j.msec.2014.01.025 (Epub 2014 Jan 15)

    Article  CAS  Google Scholar 

  40. L. Saint-Sulpice, S. Arbab-Chirani, and S. Calloch, Thermomechanical Cyclic Behavior Modeling of Cu-AL-Be SMA Materials and Structures, Int. J. Solids Struct., 2012, 49(9), p 1088–1102

    Article  CAS  Google Scholar 

  41. Cast3M. http://www-cast3m.cea.fr. Accessed 18 Jan 2018

  42. L. Saint-Sulpice, S. Arbab Chirani, and S. Calloch, A 3D Super-Elastic Model for Shape Memory Alloys Taking into Account Progressive Strain Under Cyclic Loadings, Mech. Mater., 2009, 41, p 12–26

    Article  Google Scholar 

  43. C. Bouvet, S. Calloch, and C. Lexcellent, A Phenomenological Model for Pseudoelasticity of Shape Memory Alloys Under Multiaxial Proportional and Nonproportional Loadings, Eur. J. Mech. A. Solids, 2004, 23, p 37–61

    Article  Google Scholar 

  44. K. Taillard, S. Arbab Chirani, S. Calloch, and C. Lexcellent, Equivalent Transformation Strain and Its Relation with Martensite Volume Fraction for Isotropic and Anisotropic Shape Memory Alloys, Mech. Mater., 2008, 40(4–5), p 151–170

    Article  Google Scholar 

  45. International Organization for Standardization, Dentistry Root-Canal Instruments-Part 1: General Requirements and Test Methods, ISO 3630-1 (2008)

  46. H.P. Lopes, C.N. Elias, M.V. Vieira, J.F. Jr., M. Siqueira, W.S. Mangelli, V.T. Lopes, F.R. Vieira, J.C. Alves, and T.G.Soares Oliveira, Fatigue Life of Reciproc and Mtwo Instruments Subjected to Static and Dynamic Tests, J. Endod., 2013, 39(5), p 693–696. https://doi.org/10.1016/j.joen.2012.11.048 (Epub 2013 Feb 8)

    Article  Google Scholar 

  47. J. Piao, K. Miyara, A. Ebihara, N. Nomura, T. Hanawa, and H. Suda, Correlation Between Cyclic Fatigue and the Bending Properties of Nickel Titanium Endodontic Instruments, Dent. Mater. J., 2014, 33(4), p 539–544

    Article  CAS  Google Scholar 

  48. H.M. Zhou, Y. Shen, W. Zheng, L. Li, Y.F. Zheng, and M. Haapasalo, Mechanical Properties of Controlled Memory and Superelastic Nickel-Titanium Wires Used in the Manufacture of Rotary Endodontic Instruments, J. Endod., 2012, 38(11), p 1535–1540. https://doi.org/10.1016/j.joen.2012.07.006 (Epub 2012 Sep 10)

    Article  Google Scholar 

  49. F. Auricchio and L. Petrini, A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems, Int. J. Numer. Meth. Eng., 2004, 61, p 807–836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Arbab Chirani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, V., Pino, L., Arbab Chirani, R. et al. Experimental Validation of Numerical Simulations of a New-Generation NiTi Endodontic File Under Bending. J. of Materi Eng and Perform 27, 5856–5864 (2018). https://doi.org/10.1007/s11665-018-3674-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3674-2

Keywords

Navigation