Skip to main content
Log in

Comparison of Different Processing Routes for the Synthesis of Semiconducting AlSb

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AlSb is a low-cost, high-band-gap semiconducting material, yet largely limited in its potential due to difficulty in the synthesis of single-phase AlSb. The present work compares different processing routes in their potency to produce bulk and nanocrystalline AlSb. Vacuum arc melting has been successfully employed, for the first time, to synthesize single-phase bulk AlSb. Owing to high vapor pressure of Sb, an optimum amount of excess Sb (3%) needs to be added to achieve single-phase line compound AlSb. Two methods, viz. mechanical alloying of elemental powders and mechanical milling of cast alloy, have been used to synthesize nanocrystalline AlSb. Nanocrystalline AlSb could be produced after ball milling the cast alloy; however, prolonged milling results in the appearance of Sb along with a non-stoichiometric Al-Sb-O oxide. Mechanical alloying of Al and Sb does not lead to appearance of single-phase AlSb, and the mixture largely consists of starting material and amorphous products. Therefore, the effectiveness of a synthesis route in producing single-phase AlSb is governed by the tendency of oxygen pickup during the processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Effect of Antisite Defects on Band Structure and Thermoelectric Performance of ZrNiSn Half-Heusler Alloys, Appl. Phys. Lett., 2010, 96, p 10–13

    Google Scholar 

  2. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, and W.W. Scott, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, OH, 1986

    Google Scholar 

  3. R.L. Sarkar and S. Chatterjee, Electronic Structure and Optical Properties of AlP, AlAs, and AlSb, Phys. Status Solidi., 1979, 94, p 641–647

    Article  CAS  Google Scholar 

  4. A.B. Djurišić, Y. Chan, and E.H. Li, Progress in the Room-Temperature Optical Functions of Semiconductors, Mater. Sci. Eng. R Rep., 2002, 38, p 237–293

    Article  Google Scholar 

  5. T. Singh and R.K. Bedi, Growth and Properties of Aluminium Antimonide Films Produced by Hot Wall Epitaxy on Single-Crystal KCl, Thin Solid Films, 1998, 312, p 111–115

    Article  CAS  Google Scholar 

  6. J. He, L. Wu, L. Feng, J. Zheng, J. Zhang, W. Li, B. Li, and Y. Cai, Structural, Electrical and Optical Properties of Annealed Al/Sb Multilayer Films, Sol. Energy Mater. Sol. Cells, 2011, 95, p 369–372

    Article  CAS  Google Scholar 

  7. M. Stjerndahl, H. Bryngelsson, T. Gustafsson, J.T. Vaughey, M.M. Thackeray, and K. Edstrom, Surface Chemistry of Intermetallic AlSb-Anodes for Li-Ion Batteries, Electrochim. Acta, 2007, 52, p 4947–4955

    Article  CAS  Google Scholar 

  8. L. Baggetto, M. Marszewski, J. Górka, M. Jaroniec, and G.M. Veith, AlSb Thin Films as Negative Electrodes for Li-Ion and Na-Ion Batteries, J. Power Sources, 2013, 243, p 699–705

    Article  CAS  Google Scholar 

  9. C.J. Smithells, W.F. Gale, and T.C. Totemeier, Smithells Metals Reference Book, Elsevier Butterworth-Heinemann, Burlington, 2004

    Google Scholar 

  10. E.F. Steigmeier and I. Kudman, Thermal Conductivity of III-V Compounds at High Temperatures, Phys. Rev., 1963, 132, p 508–512

    Article  CAS  Google Scholar 

  11. M. Leroux, A. Tromson-Carli, P. Gibart, C. Vérié, C. Bernard, and M.C. Schouler, Growth of AlSb on Insulating Substrates by Metal Organics Chemical Vapour Deposition, J. Cryst. Growth, 1980, 48, p 367–378

    Article  CAS  Google Scholar 

  12. T. Shibata, J. Nakata, Y. Nanishi, and M. Fujimoto, A Rutherford Backscattering Spectroscopic Study of AlSb Oxidation Process in Air, Jap. J. Appl. Phys., 1994, 33, p 1767–1772

    Article  CAS  Google Scholar 

  13. T. Gandhi, K.S. Raja, and M. Misra, Room Temperature Electrodeposition of Aluminum Antimonide Compound Semiconductor, Electrochim. Acta, 2008, 53, p 7331–7337

    Article  CAS  Google Scholar 

  14. S. Inbakumar and A. Anu kaliani, Optical and Structural Analysis of Plasma-Treated and Annealed Al–Sb Bilayer Thin Films, Ionics, 2009, 15, p 191–195

    Article  CAS  Google Scholar 

  15. C. Wichasilp, T. Thongtem, S. Thongtem, Solid-State Fabrication of Nanostructured AlSb by Electron Beam Heating Process, in Nanoelectronics Conference, 3rd International 86 (2010)

  16. D.M. Trichês, S.M. Souza, C.M. Poffo, J.C. De Lima, T.A. Grandi, and R.S. De Biasi, Structural Instability and Photoacoustic study of AlSb Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 505, p 762–767

    Article  Google Scholar 

  17. H. Honda, H. Sakaguchi, Y. Fukuda, and T. Esaka, Anode Behaviors of Aluminum Antimony Synthesized by Mechanical Alloying for Lithium Secondary Battery, Mater. Res. Bull., 2003, 38, p 647–656

    Article  CAS  Google Scholar 

  18. F. Popa, I. Chicinas, and O. Isnard, AlSb Intermetallic Semiconductor Compound Formation by Solid State Reaction After Partial Amorphization Induced by Mechanical Alloying, Intermetallics, 2017, 93, p 371–376

    Article  Google Scholar 

  19. R. Kassing, P. Petkov, W. Kulisch, C. Popov, Functional Properties of Nanostructured Materials, Vasa (2005)

  20. W. Xie, S. Zhu, X. Tang, J. He, Y. Yan, V. Ponnambalam, Q. Zhang, S.J. Poon, and T. Tritt, Synthesis and Thermoelectric Properties of (Ti, Zr, Hf)(Co, Pd)Sb Half-Heusler Compounds, J. Phys. D Appl. Phys., 2009, 42, p 235407

    Article  Google Scholar 

  21. E. Rausch, B. Balke, T. Deschauer, S. Ouardi, and C. Felser, Charge Carrier Concentration Optimization of Thermoelectric p-Type Half-Heusler Compounds, APL Mater., 2015, 3, p 041516

    Article  Google Scholar 

  22. K. Zbitnew and J.C. Woolley, The Quaternary Alloy System Alx Ga y In1−xy Sb, J. Appl. Phys., 1981, 52, p 6611–6616

    Article  CAS  Google Scholar 

  23. D.R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis, London, 2003

    Google Scholar 

  24. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829

    Article  CAS  Google Scholar 

  25. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty, Influence of Sequence of Elemental Addition on Phase Evolution in Nanocrystalline AlCoCrFeNi: Novel Approach to Alloy Synthesis Using Mechanical Alloying, Mater. Des., 2017, 126, p 37–46

    Article  CAS  Google Scholar 

  26. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater Sci., 2001, 46, p 1–184

    Article  CAS  Google Scholar 

  27. A.K. Srivastav, J. Basu, S. Kashyap, N. Chawake, D. Yadav, and B.S. Murty, Scripta Materialia Crystallographic-Shear-Phase-Driven W 18 O 49 Nanowires Growth on Nanocrystalline W Surfaces, Scr. Mater., 2016, 115, p 28–32

    Article  CAS  Google Scholar 

  28. N. Chawake, N.T.B.N. Koundinya, S. Kashyap, A.K. Srivastav, D. Yadav, R.A. Mondal, and R. Sankar, Materials Characterization Formation of Amorphous Alumina During Sintering of Nanocrystalline B2 Aluminides, Mater. Charact., 2016, 119, p 186–194

    Article  CAS  Google Scholar 

  29. Q. Zeng and I. Baker, Magnetic Properties and Thermal Ordering of Mechanically Alloyed Fe – 40 at% Al, Intermetallics, 2006, 14, p 396–405

    Article  CAS  Google Scholar 

  30. M.M. Moshksar and M. Mirzaee, Formation of NiAl Intermetallic by Gradual and Explosive Exothermic Reaction Mechanism During Ball Milling, Intermetallics, 2004, 12, p 1361–1366

    Article  CAS  Google Scholar 

  31. L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E.J. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminum Oxide Films on Aluminum Substrates, Phys. Rev. B., 2000, 62, p 4707–4719

    Article  CAS  Google Scholar 

  32. N.S. Stoloff, Iron Aluminides: Present Status and Future Prospects, Mater. Sci. Eng. A, 1998, 258, p 1–14

    Article  Google Scholar 

  33. W.H. Tuan, The Effect of Al2O3 Addition on the Milling Behavior of NiAl Powder, J. Mater. Eng. Perform., 1998, 7, p 613–616

    Article  CAS  Google Scholar 

  34. H. Huang, P. Virtanen, T. Tiainen, and Y. Ji, Synthesis of γ-TiAl Based Alloy by Mechanical Alloying and Reactive Hot Isostatic Pressing, J. Mater. Eng. Perform., 1998, 7, p 784–788

    Article  CAS  Google Scholar 

  35. P. Erhart, D. Åberg, and V. Lordi, Extrinsic Point Defects in Aluminum Antimonide, Phys. Rev. B, 2010, 81, p 195216

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Murty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, A., Vaidya, M. & Murty, B.S. Comparison of Different Processing Routes for the Synthesis of Semiconducting AlSb. J. of Materi Eng and Perform 27, 6196–6205 (2018). https://doi.org/10.1007/s11665-018-3630-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3630-1

Keywords

Navigation