Skip to main content

Advertisement

Log in

Corrosion Behavior of Wire Electrical Discharge Machined Surfaces of P91 Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The extensive usage of P91 steel in certain reactor components requires its precision fabrication by wire electrical discharge machining (WEDM). The WEDM cut surfaces consist of primarily re-melted and solidified layer (recast layer) of 2-8 µm. The recast layer is a result of fast removal of heat by unaffected metallic substrate and dielectric medium leading to rapid cooling. The WEDM surface is expected to affect the component performance in terms of its corrosion properties. The microstructural changes taking place due to EDM cutting of P91 steel bring about a drastic change in the electrochemical response of surface as compared to that for bulk P91 steel. The surface microstructure is shown to alter the passivation behavior and resistance to localized corrosion. Electrochemical polarization studies were done to evaluate passivation, pitting and intergranular corrosion (IGC) behavior and field emission gun—scanning electron microscopy was used for microstructural characterization of P91 steel surfaces. The passivation behavior for P91 steel WEDM cut surfaces was better than that for diamond polished surface. But pitting corrosion resistance decreased for the P91 steel WEDM surface which is a result of inhomogeneities in the microstructure of recast layer. The IGC resistance though increased due to the decreased grain size in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, and H. Tanigawa, Current Status and Recent Research Achievements in Ferritic/Martensitic Steels, J. Nucl. Mater., 2014, 455, p 269–276

    Article  Google Scholar 

  2. V. Shamardin, V. Golovanov, T. Bulanova, A. Povstianko, A.E. Fedoseev, Y.A. Goncharenko, and Z. Ostrovsky, Mechanical Properties and Microstructure of Advanced Ferritic- Martensitic Steels used Under High Dose Neutron Irradiation, J. Nucl. Mater., 1999, 271–272, p 155–161

    Article  Google Scholar 

  3. V. Shankar, M. Valsan, K. Bhanu Sankara Rao, R. Kannan, S.L. Mannan, and S.D. Pathak, Low Cycle Fatigue Behavior and Microstructural Evolution of Modified 9Cr-1Mo Ferritic Steel, Mater. Sci. Eng. A, 2006, 437, p 413–422

    Article  Google Scholar 

  4. E. Bloom, S. Zinkle, and F. Wiffen, Materials to Deliver the Promise of Fusion Power: Progress and Challenges, J. Nucl. Mater., 2004, 329–333, p 12–19

    Article  Google Scholar 

  5. H. Sidhom, Effect of Electro Discharge Machining (EDM) on the AISI316L SS White Layer Microstructure and Corrosion Resistance, Int. J. Adv. Manuf. Tech., 2013, 65(1–4), p 141–153

    Article  Google Scholar 

  6. H.C. Tsai, B.H. Yan, and F.Y. Huang, EDM Performance of Cr/Cu-Based Composite Electrodes, Int. J. Mach. Tools Manuf., 2003, 43(3), p 245–252

    Article  Google Scholar 

  7. J. Kruth, L. Stevens, L. Froyen, and B. Lauwers, Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining, CIRP Ann., 1995, 44, p 169–172

    Article  Google Scholar 

  8. G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, and R. Flükiger, Microstructure at Submicron Scale of the White Layer Produced by EDM Technique, J. Mater. Process. Technol., 2004, 149, p 289–295

    Article  Google Scholar 

  9. F. Klocke, L. Hensgen, A. Klink, L. Ehle, and A. Schwedt, Structure and Composition of the White Layer in the Wire-EDM Process, Proc. CIRP, 2016, 42, p 673–678

    Article  Google Scholar 

  10. J.C. Rebelo, A.M. Dias, D. Kremer, and J.L. Lebrun, Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels, J. Mater. Process. Technol., 1998, 84, p 90–96

    Article  Google Scholar 

  11. S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, and S.Y. Chiou, The Machining Characteristics and Shape Recovery Ability of Ti–Ni–X (X = Zr, Cr) Ternary Shape Memory Alloys using the Wire Electro-Discharge Machining, Int. J. Mach. Tools Manuf., 2009, 49, p 509–514

    Article  Google Scholar 

  12. J.F. Liu, Y.B. Guo, and T.M. Butler, Crystallography, Compositions, and Properties of White Layer by Wire Electrical Discharge Machining of Nitinol Shape Memory Alloy, Mater. Design, 2016, 109, p 1–9

    Article  Google Scholar 

  13. M.L. Weaver and R. Newton, Investigation of the Effect of Process Parameters on the Formation and Characteristics of Recast Layer in Wire-EDM of Inconel 718, Mater. Sci. Eng. A, 2009, 513, p 208–215

    Google Scholar 

  14. B.H. Yan, Y.C. Lin, and F.Y. Huang, Surface Modification of Al-Zn-Mg Alloy by Combined Electrical Discharge Machining with Ball Burnish Machining, Int. J. Mach. Tools Manuf, 2002, 42, p 925–934

    Article  Google Scholar 

  15. A. Ntasi, W.D. Mueller, G. Eliades, and S. Zinelis, The Effect of Electro Discharge Machining (EDM) on the Corrosion Resistance of Dental Alloys, Dent. Mater., 2010, 26, p e237–e245

    Article  Google Scholar 

  16. Y. Uno, A. Okada, K. Uemura, P. Raharjo, T. Furukawa, and K. Karato, High-Efficiency Finishing Process for Metal Mould by Large-Area Electron Beam Irradiation, Precis Eng, 2005, 29, p 449–455

    Article  Google Scholar 

  17. H. Obara, H. Satou, and M. Hatano, Fundamental Study on Corrosion of Cemented Carbide during Wire EDM, J. Mater. Process. Technol., 2004, 149, p 370–375

    Article  Google Scholar 

  18. ASTM G102-89(2015) e1 Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, West Conshohocken, PA, 2015. https://doi.org/10.1520/G0102-89R15E01

  19. G. George, H. Shaikh, N. Parvathavarthini, R.P. George, and H.S. Khatak, On the Microstructure-Polarization Behavior Correlation of a 9Cr-1Mo Steel Weld Joint, J. Mater. Eng. Perfor., 2001, 10, p 460–467

    Article  Google Scholar 

  20. R.G. Bates and S.F. Acree, pH of Aqueous Mixtures of Potassium Dihydrogen Phosphate and Disodium Hydrogen Phosphate at 0 to 60 & #xB0;C, J. Res. NBS, 1945, 34, p 373–394

    Google Scholar 

  21. R.P. Singh, O.P. Modi, M.N. Mungole, and K.P. Singh, Corrosion of 2·25Cr–1Mo Ferritic Steel in Subhuric Acid and Sea Water, Br. Corros. J., 1985, 20, p 28

    Article  Google Scholar 

  22. M. Bojinov, G. Fabricius, T. Laitinen, and T. Saario, Transpassivity Mechanism of Iron-Chromium-Molybdenum Alloys Studied by AC Impedance, DC Resistance and RRDE Measurements, Electrochimica Acta, 1999, 44, p 4331–4343

    Article  Google Scholar 

  23. J.H. Kim and I.S. Hwang, Development of an In-Situ Raman Spectroscopic System for Surface Oxide Films on Metals and Alloys in High Temperature Water, Nucl. Eng. Desi, 2005, 235, p 1029–1040

    Article  Google Scholar 

  24. M.K. Nieuwoudt, J.D. Comins, and I. Cukrowski, The Growth of the Passive Film on Iron in 0.05 M NaOH Studied in situ by Raman Micro-Spectroscopy and Electrochemical Polarisation. Part I: Near-Resonance Enhancement of the Raman Spectra of Iron Oxide and Oxyhydroxide Compounds, J. Raman Spectrosc., 2011, 42, p 1335–1339

    Article  Google Scholar 

  25. K. Asami, K. Hashimoto, and S. Shimodair, An XPS Study of the Passivity of a Series of Iron-Chromium Alloys in Sulphuric Acid, Corr Sci, 1978, 18, p 151–160

    Article  Google Scholar 

  26. H.P.S. Makkar, P. Siddhuraja, and K. Becker, Methods in Molecular Biology, Plant Secondary Metabolite, 393, Humana Press Inc, Totowa, 2007

    Book  Google Scholar 

  27. N. Boucherit, A. Hugot-Le Goff, and S. Joiret, Influence of Ni, Mo and Cr on Pitting Corrosion of Steels Studied by Raman Spectroscopy, Corrosion, 1997, 48, p 569–578

    Google Scholar 

  28. N. Parvathavardhini, R.K. Dayal, and J.B. Gnanamoorthy, Effect of Microstructure on Corrosion Behavior of 9% Chromium-1% Molybdenum steel, Corrosion, 1996, 52(7), p 540–551

    Article  Google Scholar 

  29. S.S.M. Tavares, F.J. da Silva, C. Scandian, G.F. da Silva, and H.F.G. de Abreu, Microstructure and Intergranular Corrosion Resistance of UNS S17400 (17-4PH) Stainless Steel, Corros. Sci., 2010, 52, p 3835–3839

    Article  Google Scholar 

  30. N. Alonso-Falleiros, M. Magri, and I.G.S. Falleiros, Intergranular Corrosion in a Martensitic Stainless Steel Detected by Electrochemical Tests, Corrosion, 1999, 55, p 769–778

    Article  Google Scholar 

  31. I. Taji, M.H. Moayed, and M. Mirjalili, Correlation between sensitisation and pitting corrosion of AISI, 403 martensitic stainless steel, Corros. Sci., 2015, 92, p 301

    Article  Google Scholar 

  32. B. Sunil Kumar, V. Kain, and B. Vishwanadh, Effect of Tempering Treatments on Microstructure and Intergranular Corrosion of 13 wt% Cr Martensitic Stainless Steel, Corrosion, 2017, 73(4), p 362–378

    Article  Google Scholar 

  33. B. Poulson, The Sensitization of Ferritic Steels Containing Less than 12% Cr, Corros. Sci., 1978, 18, p 371–395

    Article  Google Scholar 

  34. L. Felloni, S.S. Traverso, G.L. Zucchini, and G.P. Cammarota, Corros. Sci., 1973, 13, p 773

    Article  Google Scholar 

  35. F. Ruel, P. Volovitch, L. Peguet, A. Gaugain, and K. Ogle, On the Origin of the Second Anodic Peak During the Polarization of Stainless Steel in Sulfuric Acid, Corrosion, 2013, 69, p 536–542

    Article  Google Scholar 

  36. J. Gui and T.M. Devine, A SERS Investigation of the Passive Films Formed on Iron in Mildly Alkaline Solutions of Carbonate/Bicarbonate and Nitrate, Corros. Sci., 1995, 37(8), p 1177–1189

    Article  Google Scholar 

  37. X. Zhang, W. Xu, D.W. Shoesmith, and J.C. Wren, Kinetics of H2O2 Reaction with Oxide Films on Carbon Steel, Corros. Sci., 2007, 49(12), p 4553–4567

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help extended by Mr. Sanjay, MSD, BARC for SEM examination and summer project trainee Mr. Harsh Dixit, IITBHU for his help in the electrochemical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geogy J. Abraham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Abraham, G.J., Mishra, A. et al. Corrosion Behavior of Wire Electrical Discharge Machined Surfaces of P91 Steel. J. of Materi Eng and Perform 27, 4561–4570 (2018). https://doi.org/10.1007/s11665-018-3558-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3558-5

Keywords

Navigation