Skip to main content

Advertisement

Log in

Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)<10-10>//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2010, 6, p 1680–1692

    Article  Google Scholar 

  2. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734

    Article  Google Scholar 

  3. J. Vormann, Magnesium: Nutrition and Metabolism, Mol. Aspects Med., 2003, 24(1-3), p 27–37

    Article  Google Scholar 

  4. J. Vennemeyer, T. Hopkins, M. Hershcovitch, K.D. Little, M.C. Hagen, D. Minteer, D.B. Hom, K. Marra, and S.K. Pixley, Initial Observations on Using Magnesium Metal in Peripheral Nerve Repair, J. Biomater. Appl., 2015, 29(8), p 1145–1154

    Article  Google Scholar 

  5. J.-M. Seitz, M. Durisin, J. Goldman, and J.W. Drelich, Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review, Adv. Healthcare Mater., 2015, 4(13), p 1915–1936

    Article  Google Scholar 

  6. H. Wu, C. Zhao, J. Ni, S. Zhang, J. Liu, J. Yan, Y. Chen, and X. Zhang, Research of a Novel Biodegradable Surgical Staple Made of High Purity Magnesium, Bioact. Mater., 2016, 1(2), p 122–126

    Article  Google Scholar 

  7. J.-M. Seitz, E. Wulf, P. Freytag, D. Bormann, and F.-W. Bach, The Manufacture of Resorbable Suture Material from Magnesium, Adv. Eng. Mater., 2010, 12(11), p 1099–1105

    Article  Google Scholar 

  8. K. Hanada, Development of Long-Fine WE43 Wire for Biodegradable Medical Applications, Eur. Cells Mater., 2014, 28, p 33

    Google Scholar 

  9. J. Bai, L. Yin, Y. Lu, Y. Gan, F. Xue, C. Chu, J. Yan, K. Yan, X. Wan, and Z. Tang, Preparation, Microstructure and Degradation Performance of Biomedical Magnesium Alloy Fine Wires, Prog. Nat. Sci. Mater. Int., 2014, 24(5), p 523–530

    Article  Google Scholar 

  10. H.-F. Sun, C.-J. Li, and W.-B. Fang, Corrosion Behavior of Extrusion-Drawn Pure Mg Wire Immersed in Simulated Body Fluid, Trans. Nonferrous Met. Soc. China, 2011, 21(31), p s258–s261

    Article  Google Scholar 

  11. L. Sun, J. Bai, L. Yin, Y. Gan, F. Xue, C. Chu, J. Yan, X. Wan, H. Ding, and G. Zhou, Effect of Annealing on the Microstructures and Properties of Cold Drawn Mg Alloy Wires, Mater. Sci. Eng. A, 2015, 645, p 181–187

    Article  Google Scholar 

  12. S.S. EI-rahman, Neuropathology of Aluminum Toxicity in Rats (Glutamate and GABA Impairment), Pharmacol. Res., 2003, 47(3), p 189–194

    Article  Google Scholar 

  13. Y. Nakamura, Y. Tsumura, Y. Tonogai, T. Shibata, and Y. Ito, Differences in Behavior Among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats, Fundam. Appl. Toxicol., 1997, 37(2), p 106–116

    Article  Google Scholar 

  14. L. Xu, E. Zhang, D. Yin, S. Zeng, and K. Yang, In Vitro Corrosion Behaviour of Mg Alloys in a Phosphate Buffered Solution for Bone Implant Application, J. Mater. Sci. Mater. Med., 2008, 19(3), p 1017–1025

    Article  Google Scholar 

  15. B. Zhang, Y. Wang, L. Geng, and C. Lu, Effects of Calcium on Texture and Mechanical Properties of Hot-Extruded Mg-Zn-Ca Alloys, Mater. Sci. Eng. A, 2012, 539(2), p 56–60

    Article  Google Scholar 

  16. Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, Preparation and Characterization of a New Biomedical Mg-Zn-Ca Alloy, Mater. Des., 2012, 34, p 58–64

    Article  Google Scholar 

  17. G. Song, A. Atrens, and D. StJohn, An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys, Jpn. J. Appl. Phys., 2016, 32(S3), p 84

    Google Scholar 

  18. Standard Practice for Laboratory Immersion Corrosion Testing of Metals. G 31-72, Annual Book of ASTM Standards, ASTM, Philadelphia, 2004

    Google Scholar 

  19. P.M. Jardim, G. Solórzano, and J.B. Vander, Sande, Second Phase Formation in Melt-Spun Mg-Ca-Zn Alloys, Mater. Sci. Eng. A, 2004, 381(1), p 196–205

    Article  Google Scholar 

  20. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-xZn Alloys, Corros. Sci., 2012, 64, p 184–197

    Article  Google Scholar 

  21. Y. Lu, A.R. Bradshaw, Y.L. Chiu, and I.P. Jones, Effects of Secondary Phase and Grain Size on the Corrosion of Biodegradable Mg-Zn-Ca Alloys, Mater. Sci. Eng. C, 2015, 48, p 480–486

    Article  Google Scholar 

  22. W.Z. Chen, W.C. Zhang, H.Y. Chao, L.X. Zhang, and E.D. Wang, Influence of Large Cold Strain on the Microstructural Evolution for a Magnesium Alloy Subjected to Multi-Pass Cold Drawing, Mater. Sci. Eng. A, 2015, 623, p 92–96

    Article  Google Scholar 

  23. G.K. Quainoo and S. Yannacopoulos, The Effect of Cold Work on the Precipitation kinetics of AA6111 Aluminum, J. Mater. Sci., 2004, 39(21), p 6495–6502

    Article  Google Scholar 

  24. L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, and H.J. Zhang, Influence of Deformation Rate on Microstructure, Texture and Mechanical Properties of Indirect-Extruded Mg-Zn-Ca Alloy, Mater. Charact., 2015, 104, p 66–72

    Article  Google Scholar 

  25. H.Y. Chao, H.F. Sun, W.Z. Chen, and E.D. Wang, Static Recrystallization Kinetics of a Heavily Cold Drawn AZ31 Magnesium Alloy Under Annealing Treatment, Mater. Charact., 2011, 62(3), p 312–320

    Article  Google Scholar 

  26. L.W.F. Mackenzie, B. Davis, F.J. Humphreys, and G.W. Lorimer, The Deformation, Recrystallisation and Texture of Three Magnesium Alloy Extrusions, Mater. Sci. Technol., 2013, 23(10), p 1173–1180

    Article  Google Scholar 

  27. Y.N. Wang and J.C. Huang, Texture Analysis in Hexagonal Materials, Mater. Chem. Phys., 2003, 81(1), p 11–26

    Article  Google Scholar 

  28. J.D. Robson, D.T. Henry, and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57(9), p 2739–2747

    Article  Google Scholar 

  29. X. Zhang, G. Yuan, J. Niu, P. Fu, and W. Ding, Microstructure, Mechanical Properties, Biocorrosion Behavior, and Cytotoxicity of As-Extruded Mg-Nd-Zn-Zr Alloy with Different Extrusion Ratios, J. Mech. Behav. Biomed. Mater., 2012, 9, p 153–162

    Article  Google Scholar 

  30. A. Feng and Y. Han, Mechanical and In Vitro Degradation Behavior of Ultrafine Calcium Polyphosphate Reinforced Magnesium-Alloy Composites, Mater. Des., 2011, 32(5), p 2813–2820

    Article  Google Scholar 

  31. M.J. Robinson, Mathematical Modeling of Exfoliation Corrosion in High Strength Aluminum Alloys, Corros. Sci., 1982, 22(8), p 775-790

    Article  Google Scholar 

  32. G. Ben Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 468(1-2), p 222–229

    Article  Google Scholar 

  33. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52(2), p 589–594

    Article  Google Scholar 

  34. Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831

    Article  Google Scholar 

  35. Y. Xin, T. Hu, and P.K. Chu, In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review, Acta Biomater., 2011, 7(4), p 1452–1459

    Article  Google Scholar 

  36. W.D. Mueller, M.F. de Mele, M.L. Nascimento, and M. Zeddies, Degradation of Magnesium and Its Alloys: Dependence on the Composition of the Synthetic Biological Media, J. Biomed. Mater. Res., Part A, 2009, 90(2), p 487–495

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the supports from the National Natural Science Foundation of China (No. 51271131), key projects supported by Tianjin Science and Technology (15ZCZDSY00920) and projects supported by Tianjin Special Commissioners in Science and Technology (16JCTPJC51300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Xu, G., Liu, D. et al. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application. J. of Materi Eng and Perform 27, 1837–1846 (2018). https://doi.org/10.1007/s11665-018-3278-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3278-x

Keywords

Navigation