Skip to main content
Log in

Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Clemens and S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl alloys, Adv. Eng. Mater., 2013, 15(4), p 191–215

    Article  Google Scholar 

  2. Z. Du, K. Zhang, S. Jiang, R. Zhu, and S. Li, High Temperature Mechanical Behavior of Ti-45Al-8Nb and its Cavity Evolution in Deformation, J. Mater. Eng. Perform., 2015, 24(10), p 3746–3754

    Article  Google Scholar 

  3. S. Chang, The Isothermal and Cyclic Oxidation Behavior of a Titanium Aluminide Alloy at Elevated Temperature, J. Mater. Eng. Perform., 2007, 16(4), p 508–514

    Article  Google Scholar 

  4. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Selective Laser Melting of Ti6Al4 V Alloy for Biomedical Applications: Temperature Monitoring and Microstructural Evolution, J. Alloy. Compd., 2014, 583, p 404–409

    Article  Google Scholar 

  5. J. Cheng, J. Ma, Y. Yu, L. Fu, Z. Qiao, J. Yang, J. Li, and W. Liu, Vacuum Tribological Properties of a Ti-46Al-2Cr-2Nb Intermetallics, J. Tribol., 2014, 136(2), p 021604

    Article  Google Scholar 

  6. T. Kawabata, H. Fukai, and O. Izumi, Effect of Ternary Additions on Mechanical Properties of TiAl, Acta Mater., 1998, 46(6), p 2185–2194

    Article  Google Scholar 

  7. F. Appel and R. Wagner, Microstructure and Deformation of Two-Phase γ-Titanium Aluminides, Mater. Sci. Eng., 1998, 22(5), p 187–268

    Article  Google Scholar 

  8. J. Gussone, Y. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk, and J. Hausmann, Microstructure of γ-Titanium Aluminide Processed by Selective Laser Melting at Elevated Temperatures, Intermetallics, 2015, 66, p 133–140

    Article  Google Scholar 

  9. R. Imayev, V. Imayev, M. Oehring, and F. Appel, Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys, Intermetallics, 2007, 15(4), p 451–460

    Article  Google Scholar 

  10. A. Rastkar, A. Bloyce, and T. Bell, Sliding Wear Behavior of Two Gamma-Based Titanium Aluminides, Wear, 2000, 240(1), p 19–26

    Article  Google Scholar 

  11. K. Miyoshi, B. Lerch, and S. Draper, Fretting Wear of Ti-48Al-2Cr-2Nb, Tribol. Int., 2003, 36, p 145–153

    Article  Google Scholar 

  12. X. Liu, X. Meng, H. Liu, G. Shi, S. Wu, C. Sun, M. Wang, and L. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti-6Al-4 V Alloy, Mater. Des., 2014, 55, p 404–409

    Article  Google Scholar 

  13. R. Pflumm, A. Donchev, S. Mayer, H. Clemens, and M. Schütze, High-Temperature Oxidation Behavior of Multi-phase Mo-Containing γ-TiAl-Based Alloys, Intermetallics, 2014, 53, p 45–55

    Article  Google Scholar 

  14. X. Liu and H. Wang, Modification of Tribology and High-Temperature Behavior of Ti-48Al-2Cr-2Nb Intermetallic Alloy by Laser Cladding, Appl. Surf. Sci., 2006, 252(16), p 5735–5744

    Article  Google Scholar 

  15. J. Yao, X. Shi, W. Zhai, A. Ibrahim, Z. Xu, S. Song, L. Che, Q. Zhu, Y. Xiao, and Q. Zhang, Effect of TiB2 on Tribological Properties of TiAl Self-lubricating Composites Containing Ag at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(1), p 307–318

    Article  Google Scholar 

  16. J. Cheng, Y. Yu, L. Fu, F. Li, Z. Qiao, J. Li, J. Yang, and W. Liu, Effect of TiB2 on Dry-Sliding Tribological Properties of TiAl Intermetallics, Tribol. Int., 2013, 62, p 91–99

    Article  Google Scholar 

  17. G. Zhao, J. Chen, and L. Zheng, In-situ Synthesis, Microstructure and Properties of Ti2AlN/TiB2 Composite, Int. J. Mater. Res., 2016, 108(2), p 133–138

    Article  Google Scholar 

  18. K. Zhang, F. Wang, J. Zhu, and L. Ye, The Microstructures and Mechanical Properties of V2O5-Doped Al2O3/TiAl In Situ Composites by Reactive Hot Pressing Process, J. Mater. Eng. Perform., 2013, 22(12), p 3933–3939

    Article  Google Scholar 

  19. S. Djanarthany, J. Viala, and J. Bouix, Development of SiC/TiAl Composites: Processing and Interfacial Phenomena, Mater. Sci. Eng. A, 2001, 300(1), p 211–218

    Article  Google Scholar 

  20. J. Cheng, F. Li, L. Fu, Z. Qiao, J. Yang, and W. Liu, Dry-sliding Tribological Properties of TiAl/Ti2AlC Composites, Tribol. Lett., 2014, 53(2), p 457–467

    Article  Google Scholar 

  21. T. Ai, Q. Yu, and W. Li, Design and Strengthening Behavior of Ti2AlC/TiAl Composite by Low-Temperature Hot-Pressing Process, Adv. Appl. Ceram., 2016, 115(4), p 190–192

    Article  Google Scholar 

  22. T. Ai, N. Yu, X. Feng, N. Xie, and W. Li, Low-Temperature Synthesis and Characterization of Ti2AlC/TiAl In Situ Composites via a Reaction Hot-Pressing Process in the Ti3AlC2-Ti-Al System, Met. Mater. Int., 2015, 21(1), p 179–184

    Article  Google Scholar 

  23. Y. Liu, R. Hu, J. Yang, and J. Li, Tensile Properties and Fracture Behavior of In Situ Synthesized Ti2AlN/Ti48Al2Cr2Nb Composites at Room and Elevated Temperatures, Mater. Sci. Eng., A, 2017, 679, p 7–13

    Article  Google Scholar 

  24. D. Sun, T. Sun, Q. Wang, X. Han, and Q. Guo, Fabrication of In Situ Ti2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties, J. Wuhan Univ. Technol., 2014, 29(1), p 126–130

    Article  Google Scholar 

  25. Y. Zhou, D. Sun, D. Jiang, X. Han, Q. Wang, and G. Wu, Microstructural Characteristics and Evolution of Ti2AlN/TiAl Composites with a Network Reinforcement Architecture During Reaction Hot Pressing Process, Mater. Charact., 2013, 80, p 28–35

    Article  Google Scholar 

  26. Z. Xu, X. Shi, Q. Zhang, W. Zhai, J. Yao, L. Chen, Q. Zhu, and Y. Xiao, High-Temperature Tribological Performance of Ti3SiC2/TiAl Self-lubricating Composite Against Si3N4 in Air, J. Mater. Eng. Perform., 2014, 23(6), p 2255–2264

    Article  Google Scholar 

  27. Z. Xu, X. Shi, M. Wang, W. Zhai, J. Yao, S. Song, and Q. Zhang, Effect of Ag and Ti3SiC2 on Tribological Properties of TiAl Matrix Self-lubricating Composites at Room and Increased Temperatures, Tribol. Lett., 2014, 53(3), p 617–629

    Article  Google Scholar 

  28. Z. Xu, B. Xue, X. Shi, Q. Zhang, W. Zhai, J. Yao, and Y. Wang, Sliding Speed and Load Dependence of Tribological Properties of Ti3SiC2/TiAl Composite, Tribol. T., 2015, 58(1), p 87–96

    Article  Google Scholar 

  29. Z. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56(3), p p143–p166

    Article  Google Scholar 

  30. H. Zhai, Z. Huang, Y. Zhou, Z. Zhang, and Y. Wang, Oxidation Layer in Sliding Friction Surface of High-Purity Ti3SiC2, J. Mater. Sci., 2004, 39(21), p 6635–6637

    Article  Google Scholar 

  31. P. An, Z. He, J. Qin, Z. Li, Y. Li, Z. Kou, and D. He, Stability of Titanium-Aluminium Nitride (Ti2AlN) at High Pressure and High Temperatures, J. Wuhan Univ. Technol., 2011, 26(5), p 914–919

    Article  Google Scholar 

  32. C. Martini and L. Ceschini, A Comparative Study of the Tribological Behaviour of PVD Coatings on the Ti-6Al-4 V Alloy, Tribol. Int., 2011, 44(3), p 297–308

    Article  Google Scholar 

  33. D. Kuo and K. Huang, Kinetic and Microstructure of TiN Coatings by CVD, Surf. Coat. Technol., 2001, 135(2), p 150–157

    Article  Google Scholar 

  34. Y. Xu, Q. Miao, W. Liang, X. Yu, Q. Jiang, Z. Zhang, B. Ren, and Z. Yao, Tribological Behavior of Al2O3/Al Composite Coating on γ-TiAl at Elevated Temperature, Mater. Charact., 2015, 101, p 122–129

    Article  Google Scholar 

  35. A. Rastkar and T. Bell, Characterization and Tribological Performance of Oxide Layers on a Gamma Based Titanium Aluminide, Wear, 2005, 258(11), p 1616–1624

    Article  Google Scholar 

  36. American Society for Testing and Materials, Standard Test Method for Wear Testing With a Pin-on-Disk Apparatus, ASTM G99-95, 1995

  37. Z. Yan, Q. Shen, X. Shi, K. Zou, Y. Huang, and A. Zhang, Tribological Behavior of γ-TiAl Matrix Composites with Different Contents of Multilayer Graphene, J. Mater. Eng. Perform., 2017, 26(6), p 2776–2783

    Article  Google Scholar 

  38. A. Pauschitz, M. Roy, and F. Franek, Mechanisms of Sliding Wear of Metals and Alloys at Elevated Temperatures, Tribol. Int., 2008, 41(7), p 584–602

    Article  Google Scholar 

  39. F. Bowden and D. Tabor, The Friction and Lubrication of Solids, Clarendon, London, 1986, p 374

    Google Scholar 

  40. M.N. Gardos, The Effect of anion Vacancies of the Tribological Properties of Rutile (TiO2−x), Tribol. Trans., 1989, 32(1), p 30–31

    Article  Google Scholar 

  41. M. Gardos, H. Hong, and W. Winer, The Effect of Anion Vacancies on the Tribological Properties of Rutile (TiO2−x), Part II: Experimental Evidence, Tribol. Trans., 1990, 33(2), p 209–220

    Article  Google Scholar 

  42. M. Barekat, R. Razavi, and A. Ghasemi, Wear Behavior of Laser-Cladded Co-Cr-Mo Coating on γ-TiAl Substrate, J. Mater. Eng. Perform., 2017, 26(7), p 3226–3238

    Article  Google Scholar 

  43. J. Cheng, F. Li, Z. Qiao, S. Zhu, J. Yang, and W. Liu, The Role of Oxidation and Counterface in the High Temperature Tribological Properties of TiAl Intermetallics, Mater. Des., 2015, 84, p 245–253

    Article  Google Scholar 

  44. J. Yang, P. La, W. Liu, and Q. Xue, Tribological Properties of FeAl Intermetallics Under Dry Sliding, Wear, 2004, 257(1), p 104–109

    Article  Google Scholar 

  45. P. La, Q. Xue, and W. Liu, Effects of Boron Doping on Tribological Properties of Ni3Al-Cr7C3 Coatings Under Dry Sliding, Wear, 2001, 249(1), p 93–99

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (Grant Nos. 51471058 and 51201046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Sun, D., Han, X. et al. Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite. J. of Materi Eng and Perform 27, 1973–1986 (2018). https://doi.org/10.1007/s11665-018-3263-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3263-4

Keywords

Navigation