Skip to main content
Log in

Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.W. Hutmacher, Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21, p 2529–2543

    Article  Google Scholar 

  2. H.Y. Zhuang, Y. Han, and A.L. Feng, Preparation, Mechanical Properties and In Vitro, Biodegradation of Porous Magnesium Scaffolds, Mater. Sci. Eng. C, 2008, 28, p 1462–1466

    Article  Google Scholar 

  3. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi, Compressibility of Porous Magnesium Foam: Dependency on Porosity and Pore Size, Mater. Lett., 2004, 58, p 357–360

    Article  Google Scholar 

  4. P.G. Ma, X.D. You, J.P. Gao, J.G. Yu, and K.D. Yao, Progress of Research on Bioabsorbable Synthetic Scaffold in Bone Tissue Engineering, Chem. Bull., 2001, 7, p 407–410

    Google Scholar 

  5. G. Ryan, A. Pandit, and D.P. Apatsidis, Fabrication Methods of Porous Metals for Use in Orthopaedic Applications, Biomaterials, 2006, 27, p 2651–2670

    Article  Google Scholar 

  6. R. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Progress and Challenge for Magnesium Alloys as Biomaterials, Adv. Eng. Mater., 2008, 10, p B3–B14

    Article  Google Scholar 

  7. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34

    Article  Google Scholar 

  8. T.L. Nguyen, M.P. Staiger, G.J. Dias, and T.B.F. Woodfield, A Novel Manufacturing Route for Fabrication of Topologically-Ordered Porous Magnesium Scaffolds, Adv. Eng. Mater., 2011, 13, p 872–881

    Article  Google Scholar 

  9. E. Aghion and Y. Perez, Effects of Porosity on Corrosion Resistance of Mg Alloy Foam Produced by Powder Metallurgy Technology, Mater. Charact., 2014, 96, p 78–83

    Article  Google Scholar 

  10. M. Yazdimamaghani, M. Razavi, D. Vashaee, and L. Tayebi, Surface Modification of Biodegradable Porous Mg Bone Scaffold Using Polycaprolactone/Bioactive Glass Composite, Mater. Sci. Eng. C, 2015, 49, p 436–444

    Article  Google Scholar 

  11. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloy as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    Article  Google Scholar 

  12. Y.C. Xin, T. Hu, and P.K. Chu, Degradation Behaviour of Pure Magnesium in Simulated Body Fluids with Different Concentrations of HCO3 , Corros. Sci., 2011, 53, p 1522–1528

    Article  Google Scholar 

  13. H. Krawiec, S. Stanek, V. Vignal, J. Lelito, and J.S. Suchy, The Use of Microcapillary Techniques to Study the Corrosion Resistance of AZ91 Magnesium Alloy at the Microscale, Corros. Sci., 2009, 53, p 3108–3113

    Article  Google Scholar 

  14. S. Koleini, M.H. Idris, and H. Jafari, Influence of Hot Rolling Parameters on Microstructure and Biodegradability of Mg-1Ca Alloy in Simulated Body Fluid, Mater. Des., 2012, 33, p 20–25

    Article  Google Scholar 

  15. L.P. Xu, E.L. Zhang, D.S. Yin, S.Y. Zeng, and K. Yang, In Vitro Corrosion Behaviour of Mg Alloys in a Phosphate Buffered Solution for Bone Implant Application, J. Mater. Sci. Mater. Med., 2008, 19, p 1017–1025

    Article  Google Scholar 

  16. C.J. Boehlert and K. Knittel, The Microstructure, Tensile Properties, and Creep Behavior of Mg-Zn Alloys Containing 0–4.4 wt.% Zn, Mater. Sci. Eng. A, 2006, 417, p 315–321

    Article  Google Scholar 

  17. S.H. Cai, T. Lei, N.F. Li, and F.F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577

    Article  Google Scholar 

  18. S.X. Zhang, X.N. Zhang, C.L. Zhao, J.N. Li, Y. Song, C.Y. Xie, H.R. Tao, Y. Zhang, Y.H. He, Y. Jiang, and Y.J. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640

    Article  Google Scholar 

  19. G.L. Hao, F.S. Han, and W.D. Li, Processing and Mechanical Properties of Magnesium Foams, J. Porous Mater., 2009, 16, p 251–256

    Article  Google Scholar 

  20. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, and M. Mabuchi, Porous Bioresorbable Magnesium as Bone Substitute, Mater. Sci. Forum, 2003, 419–422, p 1001–1006

    Article  Google Scholar 

  21. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Processing of Biocompatible Porous Ti and Mg, Scripta Mater., 2001, 45, p 1147–1153

    Article  Google Scholar 

  22. K. Yu, L.J. Chen, J. Zhao, S.J. Li, Y.L. Dai, Q. Huang, and Z.M. Yu, In Vitro Corrosion Behavior and In Vivo Biodegradation of Biomedical β-Ca3(PO4)2/Mg–Zn Composites, Acta Biomater., 2012, 8, p 2845–2855

    Article  Google Scholar 

  23. Y. Yan, Y.J. Kang, D. Li, K. Yu, T. Xiao, Y.W. Deng, H. Dai, Y.L. Dai, H.Q. Xiong, and H.J. Fang, Improvement of the Mechanical Properties and Corrosion Resistance of Biodegradable β-Ca3(PO4)2/Mg-Zn Composites Prepared by Powder Metallurgy: The Adding β-Ca3(PO4)2, Hot Extrusion and Aging Treatment, Mater. Sci. Eng. C, 2017, 74, p 582–596

    Article  Google Scholar 

  24. X. Jian, B. Wu, Y.F. Wei, S.X. Dou, X.L. Wang, W.D. He, and N.M. Facile, Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties, ACS Appl. Mater. Interfaces, 2016, 8, p 6101–6109

    Article  Google Scholar 

  25. X. Jian, G.Z. Chen, C. Wang, L.J. Yin, G. Li, P. Yang, L. Chen, B. Xu, Y. Gao, Y.Y. Feng, H. Tang, C.H. Luan, Y.L. Liang, J. Jiang, Y. Cao, S.Y. Wang, and X. Gao, Enhancement in Photoluminescence Performance of Carbon-Decorated T-ZnO, Nanotechnology, 2015, 26, p 125705

    Article  Google Scholar 

  26. J. Čapek and D. Vojtěch, Properties of Porous Magnesium Prepared by Powder Metallurgy, Mater. Sci. Eng. C, 2013, 33, p 564–569

    Article  Google Scholar 

  27. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12, p 63–72

    Article  Google Scholar 

  28. P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, and J. Brauer, Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction vessel, Thermochim. Acta, 2004, 424, p 131–142

    Article  Google Scholar 

  29. J. Čapek and D. Vojtěch, Effect of Sintering Conditions on the Microstructural and Mechanical Characteristics of Porous Magnesium Materials Prepared by Powder Metallurgy, Mater. Sci. Eng. C, 2014, 35, p 21–28

    Article  Google Scholar 

  30. F. Witte, H. Ulrich, M. Rudert, and E. Willbold, Biodegradable Magnesium Scaffolds: Part 1: Appropriate Inflammatory Response, J. Biomed. Mater. Res. A, 2007, 81, p 748–756

    Article  Google Scholar 

  31. Y. Liu, Y.X. Li, J. Wan, and H.W. Zhang, Evaluation of Porosity in Lotus-Type Porous Magnesium Fabricated by Metal/Gas Eutectic Unidirectional Solidification, Mater. Sci. Eng. A, 2005, 402, p 47–54

    Article  Google Scholar 

  32. Z.S. Seyedraoufi and S. Mirdamadi, Synthesis, Microstructure and Mechanical Properties of Porous Mg-Zn Scaffolds, J. Mech. Behav. Biomed., 2013, 21, p 1–8

    Article  Google Scholar 

  33. D. Vojtěch, and J. Čapek, in Proceedings of the 20th Anniversary International Conference on Metallurgy and Materials (2011), pp. 903–908

  34. American Society for Testing Materials, in Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, 2004)

  35. C.J. Deng, M.L. Wong, M.W. Ho, P. Yu, and D.H.L. Ng, Formation of MgO and Mg–Zn Intermetallics in an Mg-Based Composite by In Situ Reactions, Compos. A Appl. Sci., 2005, 36, p 551–557

    Article  Google Scholar 

  36. C.C. Kammerer, N.S. Kulkarni, R.J. Warmack, and Y.H. Sohn, Interdiffusion and Impurity Diffusion in Polycrystalline Mg Solid Solution with Al or Zn, J. Alloys Compd., 2014, 617, p 968–974

    Article  Google Scholar 

  37. C.A.C. Sequeira and L. Amaral, Role of Kirkendall Effect in Diffusion Processes in Solids, Trans. Nonferrous Met. Soc. China, 2014, 24, p 1–11

    Article  Google Scholar 

  38. M.B. Kannan and R.K.S. Raman, Evaluating the Stress Corrosion Cracking Susceptibility of Mg-Al-Zn Alloy in Modified-Simulated Body Fluid for Orthopaedic Implant Application, Scripta Mater., 2008, 59, p 175–178

    Article  Google Scholar 

  39. Y.Z. Luo, Y. Sun, J.L. Lv, X.H. Wang, J. Lia, and F.S. Wang, Transition of Interface Oxide Layer from Porous Mg(OH)2, to Dense MgO Induced by Polyaniline and Corrosion Resistance of Mg Alloy Therefrom, Appl. Surf. Sci., 2015, 328, p 247–254

    Article  Google Scholar 

  40. A. Yamashita, Z. Horita, and T.G. Langdon, Improving the Mechanical Properties of Magnesium and a Magnesium Alloy Through Severe Plastic Deformation, Mater. Sci. Eng. A, 2001, 300, p 142–147

    Article  Google Scholar 

  41. X. Wang, H.L. Dong, X.L. Ma, and Y.F. Zheng, Microstructure, Mechanical Property and Corrosion Behaviors of Interpenetrating C/Mg-Zn-Mn Composite Fabricated by Suction Casting, Mater. Sci. Eng. C, 2013, 33, p 618–625

    Article  Google Scholar 

  42. X. Zhang, X.W. Li, J.G. Li, and X.D. Sun, Preparation and Mechanical Property of a Novel 3D Porous Magnesium Scaffold for Bone Tissue Engineering, Mater. Sci. Eng. C, 2014, 42, p 362–367

    Article  Google Scholar 

  43. D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta, and S.B. Arya, Titanium Foam with Coarser Cell Size and Wide Range of Porosity Using Different types of Evaporative Space Holders Through Powder Metallurgy Route, Mater. Des., 2014, 63, p 89–99

    Article  Google Scholar 

  44. J. Xiao, H. Cui, G. Qiu, Y. Yang, and L. Xuewei, Investigation on Relationship Between Porosity and Spacer Content of Titanium Foams, Mater. Des., 2015, 88, p 132–137

    Article  Google Scholar 

  45. G. Song and S. Song, A Possible Biodegradable Magnesium Implant Material, Adv. Eng. Mater., 2007, 9, p 298–302

    Article  Google Scholar 

  46. D.M. Liu, Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceram. Int., 1997, 23, p 135–139

    Article  Google Scholar 

  47. H.R. Ramay and M. Zhang, Preparation of Porous Hydroxyapatite Scaffolds by Combination of the Gel-Casting and Polymer Sponge Methods, Biomaterials, 2003, 24, p 3293–3302

    Article  Google Scholar 

  48. M.E. Gomes, A.S. Ribeiro, P.B. Malafaya, R.L. Reis, and A.M. Cunha, A New Approach Based on Injection Moulding to Produce Biodegradable Starch-Based Polymeric Scaffolds: Morphology, Mechanical and Degradation Behaviour, Biomaterials, 2001, 22, p 883–889

    Article  Google Scholar 

  49. K. Rezwan, Q.Z. Chen, J.J. Blaker, and A.R. Boccaccini, Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering, Biomaterials, 2006, 27, p 3413–3431

    Article  Google Scholar 

  50. A. Vahid, P. Hodgson, and Y. Li, New Porous Mg Composites for Bone Implants, J. Alloys Compd., 2017, 724, p 176–186

    Article  Google Scholar 

  51. MYu Bal’shin, Powder Metallography, Metallurgizdat, Moscow, 1948 ((in Russian))

    Google Scholar 

  52. E. Ryshkewitch, Compression Strength of Porous Sintered Alumina and Zirconia. 9th Communication to Ceramography, J. Am. Ceram. Soc., 1953, 36, p 65–68

    Article  Google Scholar 

  53. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999

    Google Scholar 

  54. S. Virtanen, Biodegradable Mg and Mg Alloys: Corrosion and Biocompatibility, Mater. Sci. Eng. B, 2011, 176, p 1600–1608

    Article  Google Scholar 

  55. G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  56. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-x Zn Alloys, Corros. Sci., 2012, 64, p 184–197

    Article  Google Scholar 

  57. M.I. Jamesh, G. Wu, Y. Zhao, D.R. Mckenzie, M.M.M. Bilek, and P.K. Chu, Electrochemical Corrosion Behavior of Biodegradable Mg-Y-RE and Mg-Zn-Zr Alloys in Ringer’s Solution and Simulated Body Fluid, Corros. Sci., 2014, 91, p 160–184

    Article  Google Scholar 

  58. X. Ye, M. Chen, M. Yang, J. Wei, and D. Liu, In Vitro Corrosion Resistance and Cytocompatibility of Nano-Hydroxyapatite Reinforced Mg-Zn-Zr Composites, J. Mater. Sci. Mater. Med., 2010, 21, p 1321–1328

    Article  Google Scholar 

  59. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and Bio-Corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292

    Article  Google Scholar 

  60. Y. Song, D. Shan, R. Chen, F. Zhang, and E.H. Han, Biodegradable Behaviors of AZ31 Magnesium Alloy in Simulated Body Fluid, Mater. Sci. Eng. C, 2009, 29, p 1039–1045

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the 2015 ShanDong province project of outstanding subject talent group, the project (81472058) supported by the National Natural Science Foundation of China, the project (A2016003) supported by the Health and Family Planning Commission of Hunan Province and the project (2017GK2120) supported by the Key Research and Development Program of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Kang, Y., Li, D. et al. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering. J. of Materi Eng and Perform 27, 970–984 (2018). https://doi.org/10.1007/s11665-018-3189-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3189-x

Keywords

Navigation