Skip to main content

Advertisement

Log in

Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy were investigated in this paper. The AlCoCrFeNi2W x alloys comprised the primary BCC phase plus eutectic FCC/BCC phases. It was found that W element can both promote the formation of the primary BCC phase and act as a solid solution strengthening element. The hardness of the AlCoCrFeNi2W x alloys increased from HV 293 to HV 356.2 with the increase in W content. The addition of W element improved the strength of alloys but reduced ductility. Thereinto, the AlCoCrFeNi2W0.2 alloy showed the most excellent compressive properties with the fracture strength of 2785.9 MPa and the plastic strain of 0.42, respectively, which implied the potential industrial application values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multi-Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A., 2004, 375–377, p 213–218

    Article  Google Scholar 

  3. Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200

    Article  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistent High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158

    Article  Google Scholar 

  5. M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and Wear Behavior of Al x Co1.5CrFeNi1.5Ti y High-Entropy Alloys, Acta. Mater., 2011, 59, p 6308–6317

    Article  Google Scholar 

  6. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue Behavior of Al0.5CoCrCuFeNi High Entropy Alloys, Acta. Mater., 2012, 60, p 5723–5734

    Article  Google Scholar 

  7. P. Kozelj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jaglicic, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinsek, Discovery of a Superconducting High-Entropy Alloy, Phys. Rev. Lett., 2014, 113, p 107001

    Article  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455

    Article  Google Scholar 

  9. X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, and M.W. Chen, Nanoscale Phase Separation in a FCC-Based CoCrCuFeNiAl0.5 High-Entropy Alloy, Acta. Mater., 2015, 84, p 145–152

    Article  Google Scholar 

  10. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212

    Article  Google Scholar 

  11. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase, JOM, 2014, 66(10), p 1984–1992

    Article  Google Scholar 

  12. A. Takeuchi, N. Chen, T. Wada, Y. YoKoyama, H. Kato, A. Inoue, and J.W. Yeh, Pd20Pt20Cu20Ni20P20 High-Entropy Alloy as a Bulk Metallic Glass in the Centimeter, Intermetallics, 2011, 19, p 1546–1554

    Article  Google Scholar 

  13. Y.P. Wang, Ph.D. Thesis (School of Materials Science and Engineering, HIT, China, 2009)

  14. Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, and T.J. Li, Microstructure and Mechanical Properties of Multi-Component AlCrFeNiMo x High-Entropy Alloy, J. Alloys Compd., 2013, 573, p 96–101

    Article  Google Scholar 

  15. S. Guo, N. Chun, and C.T. Liu, Sunflower-Like Solidification Microstructure in a Near-Eutectic High-Entropy Alloy, Mater. Res. Lett., 2013, 1(4), p 228–232

    Article  Google Scholar 

  16. S. Guo, N. Chun, and C.T. Liu, Anomalous Solidification Microstructure in Co-Free Al x CrCuFeNi2 High-Entropy Alloys, J. Alloys Compd., 2013, 557, p 77–81

    Article  Google Scholar 

  17. L. Jiang, Y.P. Lu, Y. Dong, T.M. Wang, Z.Q. Cao, and T.J. Li, Effects of Nb Addition on Structural Evolution and Properties of the CoFeNi2V0.5 High-Entropy Alloy, Appl. Phys. A, 2015, 119, p 291–297

    Article  Google Scholar 

  18. S.G. Ma and Y. Zhang, Effect of Nb Addition on the Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2012, 532, p 480–486

    Article  Google Scholar 

  19. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTi x Alloys, Intermetallics, 2007, 15, p 357–362

    Article  Google Scholar 

  20. A.M. Li, D. Ma, and Q.F. Zheng, Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys, J. Mater. Eng. Perform., 2014, 23(4), p 1197–1203

    Article  Google Scholar 

  21. C.Y. Hsu, W.R. Wang, W.Y. Tang, S.K. Chen, and J.W. Yeh, Microstructure and Mechanical Properties of New AlCo x CrFeMo0.5Ni High-Entropy Alloys, Adv. Eng. Mater., 2010, 12(1–2), p 44–49

    Article  Google Scholar 

  22. J.T. Guo, Materials Science and Engineering for Superalloys. www.sciencep.com. 2008, p 95–96

  23. W.R. Wang, W.L. Wang, and J.W. Yeh, Phases, Microstructure and Mechanical Properties of Al x CoCrFeNi High-Entropy Alloys at Elevated Temperatures, J. Alloys Compd., 2014, 589, p 143–152

    Article  Google Scholar 

  24. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta. Mater., 2014, 62, p 105–113

    Article  Google Scholar 

  25. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72

    Article  Google Scholar 

  26. Y.P. Lu, Y. Dong, L. Jiang, T.M. Wang, T.J. Li, and Y. Zhang, A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys, Entropy, 2015, 17, p 2355–2366

    Article  Google Scholar 

  27. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538

    Article  Google Scholar 

  28. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  Google Scholar 

  29. S. Guo, N. Chun, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 103505

    Article  Google Scholar 

  30. M.G. Poletti and L. Battezzati, Electro and Thermodynamic Criteria for the Occurrence of High Entropy Alloys in Metallic Systems, Acta. Mater., 2014, 75, p 297–306

    Article  Google Scholar 

  31. A.K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, A Geometrical Parameter for the Formation of Disordered Solid Solutions in Multi-Component Alloys, Intermetallics, 2014, 53, p 112–119

    Article  Google Scholar 

  32. Z.J. Wang, Y.H. Huang, Y. Yang, J.C. Wang, and C.T. Liu, Atomic-Size Effect and Solid Solubility of Multicomponent Alloys, Scripta. Mater., 2015, 94, p 28–31

    Article  Google Scholar 

  33. Y. Dong, Y.P. Lu, L. Jiang, T.M. Wang, and T.J. Li, Effects of Electro-Negativity on the Stability of Topologically Close-Packed Phase in High Entropy Alloys, Intermetallics, 2014, 52, p 105–109

    Article  Google Scholar 

  34. A. Takeuchi and A. Inoue, Quantitative Evaluation of Critical Cooling Rate for Metallic Glasses, Mater. Sci. Eng. A, 2001, 304–306, p 446–451

    Article  Google Scholar 

  35. X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAl x High Entropy Alloys, Procedia Eng., 2012, 36, p 292–298

    Article  Google Scholar 

  36. Q.C. Fan, B.S. Li, and Y. Zhang, Influence of Al and Cu Elements on the Microstructure and Properties of (FeCrNiCo)Al x Cu y High-Entropy Alloys, J. Alloys Compd., 2014, 614, p 203–210

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 51671044) and “one-hundred young talents” projects of Guangdong University of Technology (No. 220413575).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Dong or Yiping Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lu, Y. Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy. J. of Materi Eng and Perform 27, 109–115 (2018). https://doi.org/10.1007/s11665-017-3096-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3096-6

Keywords

Navigation