Skip to main content
Log in

Influence of Asymmetric Cyclic Loading on Structural Evolution and Deformation Behavior of Cu-5 at.% Zr Alloy: An Atomistic Simulation-Based Study

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation-based studies of tensile test and structural evolution of Cu-5 at.% Zr alloy under asymmetric cyclic loading (i.e., ratcheting behavior) considering various stress ratios such as − 0.2, − 0.4 and − 0.6 for different temperatures, viz.≈ 100, 300 and 500 K have been performed using embedded atom model Finnis–Sinclair potential. According to obtained stress–strain response from MD calculation, Cu-5 at.% Zr alloy specimen is pristine in nature as sudden drop in stress just after yield stress and subsequent elastic type deformation are observed for this alloy. Predicted ratcheting strain by MD simulation for Cu-5 at.% Zr alloy varies from 4.5 to 5%. Significant increase in ratcheting strain has been observed with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed radial distribution function analysis and cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Li, Q. Guo, J.A. Kalb, and C.V. Thompson, Matching Glass-Forming Ability with the Density of the Amorphous Phase, Science, 2008, 322, p 1816-1819

    Article  Google Scholar 

  2. A. Inoue and N. Nishiyama, New Bulk Metallic Glasses for Applications as Magnetic Sensing, Chemical, and Structural Materials, MRS Bull., 2007, 32, p 651-658

    Article  Google Scholar 

  3. A.L. Greer and E. Ma, Bulk Metallic Glasses: At the Cutting Edge of Metals Research, MRS Bull., 2007, 32, p 611-619

    Article  Google Scholar 

  4. C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901

    Article  Google Scholar 

  5. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Development of Tough, Low-Density Titanium-Based Bulk Metallic Glass Matrix Composites with Tensile Ductility, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, p 20136-20140

    Article  Google Scholar 

  6. S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Transformation-Mediated Ductility in CuZr-Based Bulk Metallic Glasses, Nat. Mater., 2010, 9, p 473-477

    Article  Google Scholar 

  7. D.V. Louzguine, H. Kato, and A. Inoue, High-Strength Cu-Based Crystal-Glassy Composite with Enhanced Ductility, Appl. Phys. Lett., 2004, 84, p 1088-1089

    Article  Google Scholar 

  8. C.J. Byrne and M. Eldrup, Bulk Metallic Glasses, Science, 2008, 321, p 502-503

    Article  Google Scholar 

  9. S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim, and J. Eckert, Deformation-Induced Martensitic Transformation in Cu-Zr-(Al, Ti) Bulk Metallic Glass Composites, Scr. Mater., 2009, 60, p 431-434

    Article  Google Scholar 

  10. S. Pauly, G. Liu, G. Wang, J. Das, K.B. Kim, U. Kühn, D.H. Kim, and J. Eckert, Modeling Deformation Behavior of Cu-Zr-Al Bulk Metallic Glass Matrix Composites, Appl. Phys. Lett., 2009, 95, p 1906

    Article  Google Scholar 

  11. G.Z. Ma, D. Chen, Z.H. Chen, J.W. Liu, and W. Li, The Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Cu46Zr46Al8 Bulk Metallic Glass Matrix Composites, Mater. Sci. Pol., 2010, 28, p 595-601

    Google Scholar 

  12. G. Duan, K. De Blauwe, M.L. Lind, J.P. Schramm, and W.L. Johnson, Compositional Dependence of Thermal, Elastic, and Mechanical Properties in Cu-Zr-Ag Bulk Metallic Glasses, Scr. Mater., 2008, 58, p 159-162

    Article  Google Scholar 

  13. K.H. Kang, K.W. Park, J.C. Lee, E. Fleury, and B.J. Lee, Correlation Between Plasticity and Other Materials Properties of Cu-Zr Bulk Metallic Glasses: An Atomistic Simulation Study, Acta Mater., 2011, 59, p 805-811

    Article  Google Scholar 

  14. K.W. Park, J.I. Jang, M. Wakeda, Y. Shibutani, and J.C. Lee, Atomic Packing Density and Its Influence on the Properties of Cu-Zr Amorphous Alloys, Scr. Mater., 2007, 57, p 805-808

    Article  Google Scholar 

  15. Z. Xia, D. Kujawski, and F. Ellyin, Effect of Mean Stress and Ratcheting Strain on Fatigue Life of Steel, Int. J. Fatigue, 1996, 18, p 335-341

    Article  Google Scholar 

  16. B. Li, L. Reis, and M. De Freitas, Simulation of Cyclic Stress/Strain Evolutions for Multiaxial Fatigue Life Prediction, Int. J. Fatigue, 2006, 28, p 451-458

    Article  Google Scholar 

  17. C.B. Lim, K.S. Kim, and J.B. Seong, Ratcheting and Fatigue Behavior of a Copper Alloy Under Uniaxial Cyclic Loading with Mean Stress, Int. J. Fatigue, 2009, 31, p 501-507

    Article  Google Scholar 

  18. W.J. Chang, Molecular-Dynamics Study of Mechanical Properties of Nanoscale Copper with Vacancies Under Static and Cyclic Loading, Microelectron. Eng., 2003, 65, p 239-246

    Article  Google Scholar 

  19. W.J. Chang and T.H. Fang, Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Copper Using Molecular Dynamics Simulation, J. Phys. Chem. Solids, 2003, 64, p 1279-1283

    Article  Google Scholar 

  20. S. Pal, Z. Kamal, N. Yedla, and K. Dutta, Racheting Behaviour of Copper Nano-Wire by Classical Molecular Dynamics Simulations, J. Comput. Theor. Nanosci., 2015, 12, p 2264-2267

    Article  Google Scholar 

  21. D. Sopu, A. Foroughi, M. Stoica, and J. Eckert, Brittle-to-Ductile Transition in Metallic Glass Nanowires, Nano Lett., 2016, 16, p 4467-4471

    Article  Google Scholar 

  22. G.Z. Kang, Y.G. Li, J. Zhang, Y.F. Sun, and Q. Gao, Uniaxial Ratcheting and Failure Behaviors of Two Steels, Theor. Appl. Fract. Mech., 2005, 43, p 199-209

    Article  Google Scholar 

  23. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, and Z.D. Sha, Ab Initio Molecular Dynamics Study of the Local Atomic Structures in Monatomic Metallic Liquid and Glass, Mater. Des., 2015, 77, p 1-5

    Article  Google Scholar 

  24. Y.Q. Cheng and E. Ma, Indicators of Internal Structural States for Metallic Glasses: Local Order, Free Volume, and Configurational Potential Energy, Appl. Phys. Lett., 2008, 93, p 051910

    Article  Google Scholar 

  25. M. Georges, Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième Mémoire: Recherches sur les parallélloèdres primitifs, J. Reine Angew. Math., 1908, 134, p 198-287

    Google Scholar 

  26. V.A. Borodin, Local Atomic Arrangements in Polytetrahedral Materials, Philos. Mag. A, 1999, 79, p 1887-1907

    Article  Google Scholar 

  27. S.P. Pan, S.D. Feng, J.W. Qiao, W.M. Wang, and J.Y. Qin, Crystallization Pathways of Liquid-Bcc Transition for a Model Iron by Fast Quenching, Sci. Rep., 2015, 5, p 1-8

    Google Scholar 

  28. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, p 1-19

    Article  Google Scholar 

  29. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel, Development of Suitable Interatomic Potentials for Simulation of Liquid and Amorphous Cu-Zr Alloys, Philos. Mag., 2009, 89, p 967-987

    Article  Google Scholar 

  30. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2009, 18, p 015012

    Article  Google Scholar 

  31. M. Meraj, N. Yedla, and S. Pal, Role of W on the Dislocation Evolution in Ni-W Alloy During Tension Followed by Compression Loading, Met. Mater. Int., 2016, 22, p 373-382

    Article  Google Scholar 

  32. P. Wang, W. Chou, A. Nie, Y. Huang, H. Yao, and H. Wang, Molecular Dynamics Simulation on Deformation Mechanisms in Body-Centered-Cubic Molybdenum Nanowires, J. Appl. Phys., 2011, 110, p 093521

    Article  Google Scholar 

  33. R. Komanduri, N. Chandrasekaran, and L.M. Raff, Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel, Int. J. Mech. Sci., 2001, 43, p 2237-2260

    Article  Google Scholar 

  34. C. Gaudin and X. Feaugas, Cyclic Creep Process in AISI, 316L Stainless Steel in Terms of Dislocation Patterns and Internal Stresses, Acta Mater., 2004, 52, p 3097-3110

    Article  Google Scholar 

  35. K. Dutta, S. Sivaprasad, S. Tarafder, and K.K. Ray, Influence of Asymmetric Cyclic Loading on Substructure Formation and Ratcheting Fatigue Behaviour of AISI, 304LN Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 7571-7579

    Article  Google Scholar 

  36. G. Kang, Y. Liu, Y. Dong, and Q. Gao, Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments, J. Mater. Sci. Technol., 2011, 27, p 453-459

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the computer centre of National Institute of Technology Rourkela for providing high-performance computing facility (HPCF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, M., Dutta, K., Bhardwaj, R. et al. Influence of Asymmetric Cyclic Loading on Structural Evolution and Deformation Behavior of Cu-5 at.% Zr Alloy: An Atomistic Simulation-Based Study. J. of Materi Eng and Perform 26, 5197–5205 (2017). https://doi.org/10.1007/s11665-017-3003-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3003-1

Keywords

Navigation