Skip to main content
Log in

Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, 5052 Al alloy was processed through different rolling methods to obtain ultrafine grains and its high-cycle fatigue behavior were investigated. The solution-treated Al-Mg alloys (AA 5052) were deformed through different methods such as cryorolling (CR), cryo groove rolling (CGR) and cryo groove rolling followed by warm rolling (CGW), up to 75% thickness reduction. The deformed samples were subjected to mechanical testing such as hardness, tensile and high-cycle fatigue (HCF) test at stress control mode. The CGW samples exhibit better HCF strength when compared to other conditions. The microstructure of the tested samples was characterized by optical microscopy, SEM fractography and TEM to understand the deformation behavior of deformed Al alloy. The improvement in fatigue life of CR and CGR samples is due to effective grain refinement, subgrain formations, and high dislocation density observed in the heavily deformed samples at cryogenic condition as observed from SEM and TEM analysis. However, in case of CGW samples, formation of nanoshear bands accommodates the applied strain during cyclic loading, thereby facilitating dislocation accumulation along with subgrain formations, leading to the high fatigue life. The deformed or broken impurity phase particles found in the deformed samples along with the precipitates that were formed during warm rolling also play a prominent role in enhancing the fatigue strength. These tiny particles hindered the dislocation movement by effectively pinning it at grain boundaries, thereby improving the resistance of crack propagation under cyclic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Cavaliere, Fatigue Properties and Crack Behavior of Ultra-Fine and Nanocrystalline Pure Metals, Int. J. Fatigue, 2009, 31, p 1476–1489

    Article  Google Scholar 

  2. N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scripta Mater., 2004, 51, p 801–806

    Article  Google Scholar 

  3. I.F. Mohamed, S. Lee, K. Edalati, Z. Horita, S. Hirosawa, K. Matsuda, and D. Terada, Aging Behavior of Al 6061 Alloy Processed by High-Pressure Torsion and Subsequent Aging, Metall. Mater. Trans. A, 2015, 46, p 2664–2673

    Article  Google Scholar 

  4. A.P. Zhilyaev, K. Oh-Ishi, T.G. Langdon, and T.R. McNelley, Microstructural Evolution in Commercial Purity Aluminum During High-Pressure Torsion, Mater. Sci. Eng. A, 2005, 410, p 277–280

    Article  Google Scholar 

  5. B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, and R.Z. Valiev, Formation of Nanograined Structure and Decomposition of Supersaturated Solid Solution During High Pressure Torsion of Al-Zn and Al-Mg Alloys, Acta Mater., 2004, 52, p 4469–4478

    Article  Google Scholar 

  6. X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure–Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915

    Article  Google Scholar 

  7. C. Xu, Z. Horita, and T.G. Langdon, The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion, Acta Mater., 2008, 56, p 5168–5176

    Article  Google Scholar 

  8. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52, p 4589–4599

    Article  Google Scholar 

  9. S.Y. Chang, K.S. Lee, S.H. Choi, and D.H. Shin, Effect of ECAP on Microstructure and Mechanical Properties of a Commercial 6061 Al Alloy Produced by Powder Metallurgy, J. Alloys Compd., 2003, 354, p 216–220

    Article  Google Scholar 

  10. M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H. Roven, J, Microstructure Evolution and Mechanical Behavior of a Binary Al-7Mg Alloy Processed by Equal-Channel Angular Pressing, Acta Mater., 2015, 84, p 42–54

    Article  Google Scholar 

  11. L.J. Zheng, H.X. Li, M.F. Hashmi, C.Q. Chen, Y. Zhang, and M.G. Zeng, Evolution of Microstructure and Strengthening of 7050 Al Alloy by ECAP Combined with Heat-Treatment, J. Mater. Process. Technol., 2006, 171, p 100–107

    Article  Google Scholar 

  12. M. Namdar and S. Jahromi, J, Influence of ECAP on the Fatigue Behavior of Age-Hardenable 2xxx Aluminum Alloy, Int. J. Miner. Metall. Mater., 2015, 22, p 285–291

    Article  Google Scholar 

  13. P.N. Rao, D. Singh, and R. Jayaganthan, Mechanical Properties and Microstructural Evolution of Al 6061 Alloy Processed by Multidirectional Forging at Liquid Nitrogen Temperature, Mater. Des., 2014, 56, p 97–104

    Article  Google Scholar 

  14. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39

    Article  Google Scholar 

  15. O.S. Sitdikov, Comparative Analysis of Microstructures Formed in Highly Alloyed Aluminum Alloy During High-Temperature Equal-Channel Angular Pressing and Multidirectional Forging, Inorg. Mater. Appl. Res., 2016, 7, p 149–157

    Article  Google Scholar 

  16. D. Fuloria, N. Kumar, S. Goel, R. Jayaganthan, S. Jha, and D. Srivastava, Tensile Properties and Microstructural Evolution of Zircaloy-4 Processed Through Rolling at Different Temperatures, Mater. Des., 2016, 103, p 40–51

    Article  Google Scholar 

  17. A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryo forging, J. Mater. Eng. Perform., 2016, 25, p 1–15

    Article  Google Scholar 

  18. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344

    Article  Google Scholar 

  19. M. Ruppert, M. Strebl, H.W. Höppel, and M. Göken, Mechanical Properties of Ultrafine-Grained AlZnMg (Cu)-Alloys AA7020 and AA7075 Processed by Accumulative Roll Bonding, J. Mater. Sci., 2015, 50, p 4422–4429

    Article  Google Scholar 

  20. H. Xie, M.P. Wang, W. Chen, and Y. Jia, Microstructure, Mechanical Properties, and Texture Evolution of Aluminum Alloy 7005 by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2016, 25, p 1199–1210

    Article  Google Scholar 

  21. H.W. Höppel, J. May, and M. Göken, Enhanced Strength and Ductility in Ultrafine-Grained Aluminium Produced by Accumulative Roll Bonding, Adv. Eng. Mater., 2004, 6, p 781–784

    Article  Google Scholar 

  22. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry, Development of a Recovered/Recrystallized Multilayered Microstructure in Al Alloys by Accumulative Roll Bonding, Acta Mater., 2007, 55, p 5438–5448

    Article  Google Scholar 

  23. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49, p 1497–1505

    Article  Google Scholar 

  24. V. Rajinikanth, G. Arora, N. Narasaiah, and K. Venkateswarlu, Effect of Repetitive Corrugation and Straightening on Al and Al–0.25 Sc Alloy, Mater. Lett., 2008, 62, p 301–304

    Article  Google Scholar 

  25. N. Thangapandian, S.B. Prabu, and K.A. Padmanabhan, Effects of Die Profile on Grain Refinement in Al-Mg Alloy Processed by Repetitive Corrugation and Straightening, Mater. Sci. Eng. A, 2016, 649, p 229–238

    Article  Google Scholar 

  26. A. Krishnaiah, U. Chakkingal, and H.S. Kim, Mechanical Properties of Commercially Pure Aluminium Subjected to Repetitive Bending and Straightening Process, Trans. Indian Inst. Met., 2008, 61, p 165–167

    Article  Google Scholar 

  27. P.S. Pao, H.N. Jones, S.F. Cheng, and C.R. Feng, Fatigue Crack Propagation in Ultrafine Grained Al-Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169

    Article  Google Scholar 

  28. A. Vinogradov, A. Washikita, K. Kitagawa, and V.I. Kopylov, Fatigue life of Fine-Grain Al-Mg-Sc Alloys Produced by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2003, 349, p 318–326

    Article  Google Scholar 

  29. A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, and M. Kawazoe, Fatigue Properties of 5056 Al-Mg Alloy Produced by Equal-Channel Angular Pressing, Nanostruct. Mater., 1999, 11, p 925–934

    Article  Google Scholar 

  30. V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa, Overview of Fatigue Properties of Fine Grain 5056 Al-Mg Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2001, 300, p 171–182

    Article  Google Scholar 

  31. J.H. Cha, H.H. Cho, W.H. Kim, S.I. Kwun, and D.H. Shin, The Low Cycle Fatigue Behavior of Equal-Channel Angular Pressed Al 5052 Alloy, Key Eng. Mater., 2008, 385, p 725–728

    Article  Google Scholar 

  32. G. Khatibi, J. Horky, B. Weiss, and M.J. Zehetbauer, High Cycle Fatigue Behaviour of Copper Deformed by High Pressure Torsion, Int. J. Fatigue, 2010, 32, p 269–278

    Article  Google Scholar 

  33. S.K. Panigrahi and R. Jayaganthan, A Study on the Mechanical Properties of Cryorolled Al-Mg-Si Alloy, Mater. Sci. Eng. A, 2008, 480, p 299–305

    Article  Google Scholar 

  34. K.K. Yogesha, N. Kumar, A. Joshi, R. Jayaganthan, and S.K. Nath, A Comparative Study on Tensile and Fracture Behavior of Al-Mg Alloy Processed Through Cryorolling and Cryo Groove Rolling, Metallogr. Microstruct. Anal., 2016, 5, p 251–263

    Article  Google Scholar 

  35. S. Malekjani, P.D. Hodgson, P. Cizek, I. Sabirov, and T.B. Hilditch, Cyclic Deformation Response of UFG 2024 Al Alloy, Int. J. Fatigue, 2011, 33(5), p 700–709

    Article  Google Scholar 

  36. D. Singh, P. Nageswara Rao, and R. Jayaganthan, High Cyclic Fatigue Behaviour of Ultrafine Grained Al 5083 Alloy, Mater. Sci. Technol., 2014, 30, p 1835–1842

    Article  Google Scholar 

  37. U.G. Kang et al., The Improvement of Strength and Ductility in Ultra-Fine Grained 5052 Al Alloy by Cryogenic-and Warm-Rolling, J. Mater. Sci., 2010, 45, p 4739–4744

    Article  Google Scholar 

  38. Y.B. Lee, D.H. Shin, and W.J. Nam, Effect of Annealing Temperature on Tensile Behavior of 5052 Al Alloy Deformed at Cryogenic Temperature, J. Mater. Sci., 2005, 40, p 1313–1315

    Article  Google Scholar 

  39. P.N. Rao, D. Singh, and R. Jayaganthan, Effect of Annealing on Microstructure and Mechanical Properties of Al 6061 Alloy Processed by Cryorolling, Mater. Sci. Technol., 2013, 29, p 76–82

    Article  Google Scholar 

  40. S.K. Panigrahi and R. Jayaganthan, Development of Ultrafine-Grained Al 6063 Alloy by Cryorolling with the Optimized Initial Heat Treatment Conditions, Mater. Des., 2011, 32, p 2172–2180

    Article  Google Scholar 

  41. T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281(1), p 292–304

    Article  Google Scholar 

  42. C.D. Beachem, Electron Fractographic Studies of Mechanical Fracture Processes in Metals, J. Basic Eng., 1965, 87, p 299–306

    Article  Google Scholar 

  43. L. Yan and J. Fan, In-Situ SEM Study of Fatigue Crack Initiation and Propagation Behavior in 2524 Aluminum Alloy, Mater. Des., 2016, 110, p 592–601

    Article  Google Scholar 

  44. D. Singh, P. Nageswara Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al-Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655

    Article  Google Scholar 

  45. A. Gholinia, F.J. Humphreys, and P.B. Prangnell, Production of Ultra-Fine Grain Microstructures in Al-Mg Alloys by Coventional Rolling, Acta Mater., 2002, 50, p 4461–4476

    Article  Google Scholar 

  46. D. Singh, P. Nageswara Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769

    Article  Google Scholar 

  47. S. Malekjani, P.D. Hodgson, N.E. Stanford, and T.B. Hilditch, Shear Bands Evolution in Ultrafine-Grained Aluminium Under Cyclic Loading, Scripta Mater., 2013, 68(10), p 821–824

    Article  Google Scholar 

  48. U.G. Gang, S.H. Lee, and W.J. Nam, The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Mater. Trans., 2009, 50(1), p 82–86

    Article  Google Scholar 

  49. W. Bo, X.H. Chen, F.S. Pan, J.J. Mao, and F.A.N.G. Yong, Effects of Cold Rolling and Heat Treatment on Microstructure and Mechanical Properties of AA 5052 Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2015, 25(8), p 2481–2489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogesha, K.K., Joshi, A. & Jayaganthan, R. Fatigue Behavior of Ultrafine-Grained 5052 Al Alloy Processed Through Different Rolling Methods. J. of Materi Eng and Perform 26, 2826–2836 (2017). https://doi.org/10.1007/s11665-017-2705-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2705-8

Keywords

Navigation