Skip to main content
Log in

Effect of the Addition of Zn on the Microstructure and Mechanical Properties of 5083 Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the effect of alloying element Zn on microstructure and prosperity of 5083 Al alloy was investigated. The grain sizes of 5083 and 5083 + Zn alloys were refined to <200 nm by appropriate rolling processes. The microhardness and tensile tests were conducted. The results showed that the dislocation density evaluated by microhardness of rolled 5083 + Zn alloys increases from 1.90 × 1013 to 2.57 × 1013 with increasing Zn contents. The tensile tests showed that the ultimate tensile strength of rolled 5083 alloy doubled when Zn was introduced, while the uniform elongation pronounced decreased. The yield strength of 5083 + Zn alloys increases with Zn contents. However, the strain hardening rate for the rolled alloys was decreased with increasing Zn contents. Solid solution strengthen and precipitation strengthen due to addition of Zn were responsible for the increase in yield strength and ultimate tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Texture Development in Al/Al2O3 MMCs Produced by Anodizing and ARB, Mater. Sci. Eng. A, 2011, 528, p 3573–3580

    Article  Google Scholar 

  2. R. Jamaati and M.R. Toroghinejad, High-Strength and Highly-Uniform Composite Produced by Anodizing and Accumulative Roll Bonding Processes, Mater. Des., 2013, 31, p 4816–4822

    Article  Google Scholar 

  3. H. Matsunoshita, K. Edalati, M. Furui, and Z. Horita, Ultrafine-Grained Magnesium–Lithium Alloy Processed by High-Pressure Torsion: Low-Temperature Superplasticity and Potential for Hydroforming, Mater. Sci. Eng. A, 2015, 640, p 443–448

    Article  Google Scholar 

  4. X. Wang, M.G. Nie, C.T. Wang, S.C. Wang, and N. Gao, Microhardness and Corrosion Properties of Hypoeutectic Al–7Si Alloy Processed by High-Pressure Torsion, Mater. Des., 2015, 83, p 193–202

    Article  Google Scholar 

  5. A.Y. Khereddine, F.H. Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T.G. Langdon, Microstructures and Textures of a Cu–Ni–Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574, p 361–367

    Article  Google Scholar 

  6. W. Guo, Q.D. Wang, B. Ye, X.C. Li, X.T. Liu, and H. Zhou, Microstructural Refinement and Homogenization of Mg–SiC Nanocomposites by Cyclic Extrusion Compression, Mater. Sci. Eng., A, 2012, 556, p 267–270

    Article  Google Scholar 

  7. Y.J. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu, and J. Hjelen, Microstructure Evolution in Magnesium Alloy AZ31 During Cyclic Extrusion Compression, J. Alloys Compd., 2008, 462, p 192–200

    Article  Google Scholar 

  8. B.J. Han and Z. Xu, Grain Refinement Under Multi-Axial Forging in Fe–32%Ni Alloy, J. Alloys Compd., 2008, 457, p 279–285

    Article  Google Scholar 

  9. Z.D. Zhao, Q. Chen, C.K. Hu, and D.Y. Shu, Microstructure and Mechanical Properties of SPD-Processed an as-cast AZ91D+ Y Magnesium Alloy by Equal Channel Angular Extrusion and Multi-Axial Forging, Mater. Des., 2009, 30, p 4557–4561

    Article  Google Scholar 

  10. F. Khodabakhshi, M. Haghshenas, H. Eskandari, and B. Koohbor, Hardness–Strength Relationships in Fine and Ultra-Fine Grained Metals Processed Through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, 636, p 331–339

    Article  Google Scholar 

  11. J. Zrnik, T. Kovarik, Z. Novy, and M. Cieslar, Ultrafine-Grained Structure Development and Deformation Behavior of Aluminium Processed by Constrained Groove Pressing, Mater. Sci. Eng., A, 2009, 503, p 126–129

    Article  Google Scholar 

  12. G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin, Annealing Behavior of Ultrafine Grained Structure in Low-Carbon Steel Produced by Equal Channel Angular Pressing, Mater. Sci. Eng., A, 2013, 581, p 104–107

    Article  Google Scholar 

  13. H. Shahmir, M.N. Ahmadabadi, M.M. Arani, and T.G. Langdon, The Processing of NiTi Shape Memory Alloys by Equal-Channel Angular Pressing at Room Temperature, Mater. Sci. Eng., A, 2013, 576, p 178–184

    Article  Google Scholar 

  14. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, Microstructure, Mechanical Behavior and Low Temperature Superplasticity of ECAP Processed ZM21 Mg Alloy, J. Alloys Compd., 2015, 638, p 267–276

    Article  Google Scholar 

  15. E. Darmiani, I. Danaee, M.A. Golozar, and M.R. Toroghinejad, Corrosion Investigation of Al–SiC Nano-Composite Fabricated by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2013, 552, p 31–39

    Article  Google Scholar 

  16. L.H. Su, C. Lu, A.A. Gazder, A.A. Saleh, G.Y. Deng, K. Tieu, and H.J. Li, Shear Texture Gradient in AA6061 Aluminum Alloy Processed by Accumulative Roll Bonding with High Roll Roughness, J. Alloys Compd., 2014, 594, p 12–22

    Article  Google Scholar 

  17. Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li, Cu/Zr Nanoscaled Multi-Stacks Fabricated by Accumulative Roll Bonding, J. Alloys Compd., 2010, 504, p 443–447

    Article  Google Scholar 

  18. T. Hu, K. Ma, T.D. Topping, and J.M. Schoenung, Precipitation Phenomena in an Ultrafine-Grained Al Alloy, Acta Mater., 2013, 61, p 2163–2178

    Article  Google Scholar 

  19. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu, Effect of the Zener–Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation, Acta Mater., 2009, 57, p 761–772

    Article  Google Scholar 

  20. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, and K. Lu, Nitriding Iron at Lower Temperatures, Science, 2003, 299, p 686–688

    Article  Google Scholar 

  21. S. Cheng, J. Xie, A.D. Stoica, X.-L. Wang, J.A. Horton, D.W. Brown, H. Choo, and P.K. Liaw, Cyclic Deformation of Nanocrystalline and Ultrafine-Grained Nickel, Acta Mater., 2009, 57, p 1272–1280

    Article  Google Scholar 

  22. H.Y. Zhang, N. Maljkovic, and B.S. Mitchell, Structure and Interfacial Properties of Nanocrystalline Aluminum/Mullite Composites, Mater. Sci. Eng., A, 2002, 326, p 317–323

    Article  Google Scholar 

  23. K. Youssef, M. Sakaliyska, H. Bahmanpour, R. Scattergood, and C. Koch, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59, p 5758–5764

    Article  Google Scholar 

  24. T. Ogura, T. Otani, A. Hirose, and T. Sato, Improvement of Strength and Ductility of an Al–Zn–Mg Alloy by Controlling Grain Size and Precipitate Microstructure with Mn and Ag Addition, Mater. Sci. Eng. A, 2013, 580, p 288–293

    Article  Google Scholar 

  25. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An Investigation of Microstructural Stability in an Alsingle Bond Mg Alloy with Submicrometer Grain Size, Acta Mater., 1996, 44, p 2973–2982

    Article  Google Scholar 

  26. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Lavernia, Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al–Sc Alloy, Acta Mater., 2001, 49, p 3829–3838

    Article  Google Scholar 

  27. Y. Li, Z. Zhang, R. Vogt, J.M. Schoenung, and E.J. Lavernia, Boundaries and interfaces in ultrafine grain composites, Acta Mater., 2011, 59, p 7206–7218

    Article  Google Scholar 

  28. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Using ECAP to achieve grain refinement, precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy, Acta Mater., 2003, 51, p 6139–6149

    Article  Google Scholar 

  29. K. Jan, K. Martin, and S. Radan, A Model of Ultrafine Microstructure Evolution in Materials Deformed by High-Pressure Torsion, Acta Mater., 2009, 57, p 739–748

    Article  Google Scholar 

  30. S.C. Yoon, Z.J. Horita, and H.S. Kim, Finite Element Analysis of Plastic Deformation Behavior During High Pressure Torsion Processing, J. Mater. Process. Technol., 2008, 201, p 32–36

    Article  Google Scholar 

  31. A. Nazari, J.A. Mohandesi, and S. Tavareh, Microhardness Profile Prediction of a Graded Steel by Strain Gradient Plasticity Theory, Comput. Mater. Sci., 2011, 50, p 1781–1784

    Article  Google Scholar 

  32. S. Graça, R. Colaço, P.A. Carvalho, and R. Vilar, Determination of Dislocation Density from Hardness Measurements in Metals, Mater. Lett., 2008, 62, p 3812–3814

    Article  Google Scholar 

  33. R. Jamaati, M.R. Toroghinejad, S. Amirkhanlou, and H. Edris, Strengthening Mechanisms in Nanostructured Interstitial Free Steel Deformed to High Strain, Metall. Mater. Trans. A, 2015, 46, p 4013–4019

    Article  Google Scholar 

  34. M. Reihanian, R. Ebrahimi, N. Tsuji, and M.M. Moshksar, Analysis of the Mechanical Properties and Deformation Behavior of Nanostructured Commercially Pure Al Processed by Equal Channel Angular Pressing (ECAP), Mater. Sci. Eng., A, 2008, 473, p 189–194

    Article  Google Scholar 

  35. B.Q. Han and D.C. Dunand, Microstructure and Mechanical Properties of Magnesium Containing High Volume Fractions of Yttria Dispersoids, Mater. Sci. Eng., A, 2000, 277, p 297–304

    Article  Google Scholar 

  36. Y.M. Wang and E. Ma, Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal, Acta Mater., 2004, 52, p 1699–1709

    Article  Google Scholar 

  37. J.D. Embury and R.B. Nicholson, The Nucleation of Precipitates: the System Al–Zn–Mg, Acta Metall., 1965, 13, p 403–417

    Article  Google Scholar 

  38. M. Militzer, W.P. Sun, and J.J. Jonas, Modelling the Effect of Deformation-Induced Vacancies on Segregation and Precipitation, Acta Metall., 1994, 42, p 133–141

    Article  Google Scholar 

  39. G. Sha and A. Cerezo, Early-Stage Precipitation in Al–Zn–Mg–Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516

    Article  Google Scholar 

  40. R. Ferradut, A. Somoza, and A. Tolley, Microstructural Evolution of 7012 Alloy During the Early Stages of Artificial Ageing, Acta Mater., 1999, 47, p 4355–4364

    Article  Google Scholar 

  41. D.L. Sun, Z.X. Zhou, D.H. Ping, D.Z. Yang, and D.X. Li, In situ Observation of G. P. Zones in an Al–Zn–Mg Alloy Under Irradiation of Electron Beam, J. Mater. Sci. Lett., 2001, 20, p 1413–1414

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51174060 and 51301109) and the Science and Technology Department of Liaoning Province of China (No. 2013223004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchao Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Luo, H., Mu, Y. et al. Effect of the Addition of Zn on the Microstructure and Mechanical Properties of 5083 Alloy. J. of Materi Eng and Perform 26, 2912–2918 (2017). https://doi.org/10.1007/s11665-017-2676-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2676-9

Keywords

Navigation