Skip to main content
Log in

Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Gulati, K. Kant, D. Findlay, and D. Losic, Periodically Tailored Titania Nanotubes for Enhanced Drug Loading and Releasing Performances, J. Mater. Chem. B, 2015, 3, p 2553–2559

    Article  Google Scholar 

  2. K. Memarzadeh, A.S. Sharili, J. Huang, S.C. Rawlinson, and R.P. Allaker, Nanoparticulate Zinc Oxide as a Coating Material for Orthopedic and Dental Implants, J. Biomed. Mater. Res. A, 2015, 103, p 981–989

    Article  Google Scholar 

  3. F. Wu, G. Meng, J. He, Y. Wu, F. Wu, and Z. Gu, Antibiotic-Loaded Chitosan Hydrogel with Superior Dual Functions: Antibacterial Efficacy and Osteoblastic Cell Responses, ACS Appl. Mater. Interfaces, 2014, 6, p 10005–10013

    Article  Google Scholar 

  4. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915

    Article  Google Scholar 

  5. L.L. Hench, R.J. Splinter, W.C. Allen, and T.K. Greenlee, Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, J. Biomed. Mater. Res., 1971, 5(6), p 117–141

    Article  Google Scholar 

  6. L.L. Hench, The Story of Bioglass, J. Mater. Sci., 2006, 17, p 967–978

    Google Scholar 

  7. L.L. Hench, Biomaterials: A Forecast for the Future, Biomaterials, 1998, 19, p 1419

    Article  Google Scholar 

  8. E.J. Jallot, J. Adv. Mater. (in press).

  9. V. Jankauskaitė, B. Abzalbekuly, A. Lisauskaitė, I. Procyčevas, E. Fataraitė, A. Vitkauskienė, and U. Janakhmetov, Silicone Rubber and Microcrystalline Cellulose Composites with Antimicrobial Properties, Mater. Sci., 2014, 20, p 42–49

    Google Scholar 

  10. H. Cao and X. Liu, Silver Nanoparticle-Modified Films Versus Biomedical Device-Associated Infections, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2, p 670–684

    Article  Google Scholar 

  11. G. Thirumurugan and M.D. Dhanaraju, Silver Nanoparticles: Real Antibacterial Bullets, Antimicrob. Agents, V. Bobbarala, Ed., Rijeka, InTech, 2012, p 407–422

    Google Scholar 

  12. A. Ohtani, Various Antibacterial Inorganic Materials and Their High Applicable Technology. Tokyo, IPC Press; 1997, p 1–23, 25–67, 107–130, 163–187.

  13. E. Jallot, J.M. Nedelec, A.S. Grimault, E. Chassot, A. Grandjean-Laquerriere, P. Laquerriere, and D. Laurent-Maquin, STEM and EDXS Characterisation of Physico-Chemical Reactions at the Periphery of Sol-Gel Derived Zn-Substituted Hydroxyapatites During Interactions with Biological Fluids, Colloids Surf. B Biointerfaces, 2005, 42, p 205–210

    Article  Google Scholar 

  14. E. Jallot, J.L. Irigaray, H. Oudadesse, V. Brun, G. Weber, and P. Frayssinet, Resorption Kinetics of Four Hydroxyapatite-Based Ceramics by Particle Induced X-ray Emission and Neutron Activation Analysis, Eur. Phys. J. Appl. Phys., 1999, 6, p 205–215

    Article  Google Scholar 

  15. O. Caleb, B.S. Molokwu, V. Yang, and M.B. Li, Zinc Homeostasis and Bone Mineral Density, Ohio Res. Clin. Rev., 2006, 15, p 1–15

    Google Scholar 

  16. A. Oki, B. Parveen, S. Hossain, S. Adeniji, and H. Donahue, Preparation and In Vitro Bioactivity of Zinc Containing Sol-Gel-Derived Bioglass Materials, J. Biomed. Mater. Res., 2004, 69, p 216–221

    Article  Google Scholar 

  17. W.J. Bettger and B.L. O’Dell, Physiological Roles of Zinc in the Plasma Membrane of Mammalian Cells, J. Nutr. Biochem., 1993, 4, p 194–207

    Article  Google Scholar 

  18. H. Oudadesse, S. Martin, A.C. Derrien, A. Lucas-Girot, G. Cathelineau, and G. Blondiaux, Determination of Ca, P, Sr and Mg in the Synthetic Biomaterial Aragonite by NAA, J. Radioanal. Nucl. Chem., 2004, 262(2), p 479

    Article  Google Scholar 

  19. T. Okuma, Magnesium and Bone Strength, Nutrition, 2001, 17, p 679

    Article  Google Scholar 

  20. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, and C. Knabe, Mechanisms of Magnesium-Stimulated Adhesion of Osteoblastic Cells to Commonly Used Orthopaedic Implants, J. Biomed. Mater. Res., 2002, 62, p 175

    Article  Google Scholar 

  21. I. Mayer and J.D.B. Featherstone, Dissolution Studies of Zn-Containing Carbonated Hydroxyapatites, J. Cryst. Growth, 2000, 219, p 98

    Article  Google Scholar 

  22. S. Efrima and B.V. Bronk, Silver Colloids and Impregnating or Coating Bacteria, J. Phys. Chem. B, 1998, 102, p 5947–5950

    Article  Google Scholar 

  23. K.J.J. Pajamaki, T.S. Lindholm, and O.H. Andersson, Bioactive Glass and Glass-Ceramic-Coated Hip Endoprosthesis: Experimental Study in Rabbit, J. Mater. Sci. Mater. Med., 1995, 6, p 14

    Article  Google Scholar 

  24. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T.J. Yamamuro, Solutions Able to Reproduce In Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W, Biomed. Mater. Res., 1990, 24, p 721–734

    Article  Google Scholar 

  25. K.C. Popat, E.E. Leary Swan, V. Mukhatyar, K.I. Chatvanichkul, G.K. Mor, and C.A. Grimes, Influence of Nanoporous Alumina Membranes on Long-Term Osteoblast Response’, Biomaterials, 2005, 26, p 4516–4522

    Article  Google Scholar 

  26. M.O. Montjovent, N. Burri, S. Mark, E. Federici, C. Scaletta, and P.Y. Zambelli, Fetal Bone Cells for Tissue Engineering, Bone, 2004, 35, p 1323

    Article  Google Scholar 

  27. L.C. Baxter, V. Frauchiger, M. Textor, I. Gwynn, and R.G. Richards, Fibroblast and Osteoblast Adhesion and Morphology on Calcium Phosphate Surfaces, Eur. Cells Mater., 2002, 4, p 1–17

    Google Scholar 

  28. P. Ducy and G. Karsentry, Genetic Control of Cell Differentiation in the Skeleton, Curr. Opin. Cell Biol., 1998, 10, p 614

    Article  Google Scholar 

  29. P. Saravanapavan, J.R. Jones, R.S. Pryce, and L.L. Hench, Bioactivity of Gel-Glass Powders in the CaO-SiO2 System: A Comparison with Ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. A, 2003, 66, p 110

    Article  Google Scholar 

  30. H. Liu, Q. Chen, L. Song, R. Ye, J. Lu, and H. Li, Ag-Doped Antibacterial Porous Materials with Slow Release of Silver Ions, J. Non Cryst. Solids, 2008, 354, p 1314–1317

    Article  Google Scholar 

  31. F.M. Russell, S.S.N. Biribo, G. Selvaraj, F. Oppedisano, S. Warren, A. Seduadua, E.K. Mulholland, and J.R. Carapetis, As a Bacterial Culture Medium, Citrated Sheep Blood Agar Is a Practical Alternative to Citrated Human Blood Agar in Laboratories of Developing Countries, J. Clin. Microbiol., 2006, 44, p 3346–3351

    Article  Google Scholar 

  32. J.J. Delben, O.M. Pimentel, M.B. Coelho, P.D. Candelorio, L.N. Furini, F.A. dos Santos, F.S. de Vicente, and A.A. Delben, Synthesis and Thermal Properties of Nanoparticles of Bioactive Glasses Containing Silver, J. Therm. Anal. Calorim., 2009, 97, p 433–436

    Article  Google Scholar 

  33. E. Dietrich, Effects of Mg and Zn on the Surface of Doped Melt-Derived Glass for Biomaterials Applications, Appl. Surf. Sci., 2008, 255, p 391–395

    Article  Google Scholar 

  34. S.D. Nunzio, Silver Containing Bioactive Glasses Prepared by Molten Salt Ion-Exchange, J. Eur. Ceram. Soc., 2004, 24, p 2935–2942

    Article  Google Scholar 

  35. D. Carta, J.C. Knowles, and M.E. Smith, Synthesis and Structural Characterization of P2O5–CaO–Na2O sol-gel materials, J. Non Cryst. Solids., 2007, 352, p 1141–1149

    Article  Google Scholar 

  36. I. Gutowska, Z. Machoy, and B. Machaliski, The Role of Bivalent Metals in Hydroxyapatite Structures as Revealed by Molecular Modeling with the HyperChem Software, J. Biomed. Mater. Res. A, 2005, 75, p 788–793

    Article  Google Scholar 

  37. A. Bigi, G. Falini, E. Foresti, A. Ripamonti, M. Gazzano, and N. Roveri, Magnesium Influence on Hydroxyapatite Crystallization, J. Inorgan. Biochem., 1993, 49(1), p 69–78

    Article  Google Scholar 

  38. A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A.H.S. Rebelo, and J.M.F. Ferreira, Development and In Vitro Characterization of Sol-Gel Derived CaO-P2O5-SiO2-ZnO Bioglass, Acta Biomater., 2007, 3, p 255–262

    Article  Google Scholar 

  39. V. Aina, Zinc-Containing Bioactive Glasses: Surface Reactivity and Behaviour Towards Endothelial Cells, Acta Biomater., 2009, 5, p 1211–1222

    Article  Google Scholar 

  40. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, and J.O. Kim, A Mechanistic Study of the Antibacterial Effect of Silver Ions on E. coli and Staphylococcus aureus, J. Biomed. Mater. Res., 2000, 52, p 662–668

    Article  Google Scholar 

  41. S.Y. Liaue, D.C. Read, W.J. Pugh, J.R. Furr, and A.D. Russel, Interaction of Silver Nitrate with Readily Identifiable Groups; Relationship to the Antibacterial Action of the Silver Ions, Lett. Appl. Microbiol., 1997, 25, p 279–283

    Article  Google Scholar 

  42. M. Solioz and A. Odermatt, Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae, J. Biol. Chem., 1995, 270, p 9217–9221

    Article  Google Scholar 

  43. T.N. Wells, P. Scully, G. Paravinchini, A.E. Proudfoot, and M.A. Payton, Mechanism of Irreversible Inactivation of Phosphomannose Isomerase by Silver Ions and Flamazine, Biochemistry, 1995, 34, p 7896–7903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Baghbani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghbani, F., Moztarzadeh, F., Mozafari, M. et al. Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects. J. of Materi Eng and Perform 25, 3398–3408 (2016). https://doi.org/10.1007/s11665-016-2156-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2156-7

Keywords

Navigation