Skip to main content

Advertisement

Log in

Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ′ and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between \(\dot{\upvarepsilon }_{\text{s}}\) and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.S. Sims, N. Stoloff, and W.C. Hagel, Superalloys II, High Temperature Materials for Aerospace and Industrial Power, Willey, New York, 1987

    Google Scholar 

  2. F. Schubert, Temperature and Time Dependent Transformation: Application to Heat Treatment of High Temperature Alloys, ASM, Metals Park, 1983, p 3

    Google Scholar 

  3. G.R. Leverant and B.H. Kear, The Mechanism of Creep in Gamma Prime Precipitation-Hardened Nickel-Base Alloys at Intermediate Temperatures, Metall. Trans., 1970, 1, p 491–498

    Article  Google Scholar 

  4. L.K. Singhal and M.L. Vaidya, Generation of Dislocations in a Precipitation Hardened Alloy, Metall. Trans., 1970, 1, p 1044–1045

    Google Scholar 

  5. J.K. Tien, B.H. Kear, and G.R. Leverant, On the High Activation Energy for Steady State Creep of Particle Strengthened Systems, Scr. Metall., 1972, 6, p 135–140

    Article  Google Scholar 

  6. R. Lagneborg and B. Bergman, The Stress/Creep Rate Behavior of Precipitation-Hardened Alloys, Met. Sci., 1976, 10(1), p 20–28

    Article  Google Scholar 

  7. L. Rémy, Precipitation Behavior and Creep Rupture of 706 Type Alloys, Mater. Sci. Eng., 1979, 38, p 227–239

    Article  Google Scholar 

  8. O.D. Sherby and J. Weertman, Diffusion-Controlled Dislocation Creep: A Defense, Acta Metall., 1979, 27, p 387–400

    Article  Google Scholar 

  9. K. Shiozawa and J.R. Weertman, The Nucleation of Grain Boundary Voids in a Nickel-Base Superalloy During High Temperature Creep, Scr. Metall., 1982, 16, p 735–739

    Article  Google Scholar 

  10. B.F. Dyson and M. Mclean, Particle Coarsening, σ0 and Tertiary Creep, Acta Metall., 1983, 31, p 17–27

    Article  Google Scholar 

  11. O.D. Sherby and E.M. Taleff, Influence of Grain Size, Solute Atoms and Second-Phase Particles on Creep Behavior of Polycrystalline Solids, Mater. Sci. Eng. A, 2002, A322, p 89–99

    Article  Google Scholar 

  12. H. De Cicco, M.I. Luppo, L.M. Gribaudo, and J. Ovejero-García, Microstructural Development and Creep Behavior in A286 Superalloy, Mater. Charact., 2004, 52, p 85–92

    Article  Google Scholar 

  13. A. Soula, Y. Renollet, D. Boivin, J.-L. Pouchou, D. Locq, P. Caron, and Y. Bréchet, Analysis of High-Temperature Creep Deformation in a Polycrystalline Nickel-Base Superalloy, Mater. Sci. Eng. A, 2009, A510–511, p 301–306

    Article  Google Scholar 

  14. R. Merabtine, J.P. Dallas, and M. Cornet, Creep Strengthening of Ni3(Al, Si) Intermetallic Alloy by Ductile Precipitates, Intermetallics, 2005, 13, p 179–186

    Article  Google Scholar 

  15. S. Li, J. Tao, T. Sugui, and H. Zhuangqi, Influence of Precipitate Morphology on Tensile Creep of a Single Crystal Nickel-Base Superalloy, Mater. Sci. Eng. A, 2007, 454–455, p 461–466

    Google Scholar 

  16. A.A. Tavassoli, On the Anomalous Stress-Dependence of Creep Rate in Precipitation Strengthened Alloys, Nucl. Eng. Des., 1979, 54, p 279–287

    Article  Google Scholar 

  17. B. Pieraggi and J.F. Uginet, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 1994, p 535–544

    Book  Google Scholar 

  18. W.R. Sun, H.R. Guan, M. Wang, Z.G. Wang, L.F. Huang, and Z.Q. Hu, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 2005, p 399–407

    Book  Google Scholar 

  19. X. Xie, Q. Liang, J. Dong, W. Meng, and Z. Xu, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 1994, p 711–720

    Book  Google Scholar 

  20. G.D. Smith and S.J. Patel, Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, 2005, p 135–154

    Book  Google Scholar 

  21. S. Azadian, L.-Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 53, p 7–16

    Article  Google Scholar 

  22. Z.F. Zhou and B.A. Parker, On the High-Stress Region Stress Exponent During Creep, Scr. Metall. Mater., 1995, 32, p 1889–1893

    Article  Google Scholar 

  23. C.-M. Kuo, Y.-T. Yang, H.-Y. Bor, C.-N. Wei, and C.-C. Tai, Aging Effects on the Microstructure and Creep Behavior of Inconel 718 Superalloy, Mater. Sci. Eng. A, 2009, A510–511, p 289–294

    Article  Google Scholar 

  24. American Society for Testing and Materials, E21-05, Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM, Philadelphia, 2005

    Google Scholar 

  25. American Society for Testing and Materials, E139-11, Standard Practice for Conducting Creep, Creep-Rupture and Stress-Rupture Tests of Metallic Materials, ASTM, Philadelphia, 2011

    Google Scholar 

  26. Heat Treater’s Guide, Practices and Procedures for Nonferrous Alloys, ASM International, The Materials Information Society, Materials Park, 1996

    Google Scholar 

  27. D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R. Barboza, F. Piorino-Neto, and E.A.C. Perez, Effect of Environment on the Creep Behavior of the Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2005, 399, p 276–280

    Article  Google Scholar 

  28. F.R.N. Nabarro and H.L. De Villiers, The Physics of Creep, Taylor and Francis Ltd., London, 1995

    Google Scholar 

  29. B. Kaplan, A. Blomqvist, C. Arhammar, M. Selleby, and S. Norgren, Structural Determination of (Cr,Co)7C3. Proceedings of the 18th Plansee Seminar, Reutte, Austria, 2013, pp. HM104/1–HM104/12.

  30. J.R. Davis, ASM Specialty Handbook: Nickel, Cobalt and Their Alloys, ASM International, Materials Park, 2000

    Google Scholar 

  31. M.F. Ashby, C. Gandhi, and D.M.R. Taplin, Fracture-Mechanism Maps and Their Construction for f.c.c. Metals and Alloys, Acta Mater., 1979, 27, p 699–729

    Article  Google Scholar 

  32. Y. Han and M.C. Chaturvedi, Steady State Creep Deformation of Superalloy Inconel 718, Mater. Sci. Eng., 1987, 89, p 25–33

    Article  Google Scholar 

  33. W. Chen and M.C. Chaturvedi, The Effect of Grain Boundary Precipitates on the Creep Behavior of Inconel 718, Mater. Sci. Eng. A, 1994, 183, p 81–89

    Article  Google Scholar 

  34. D.F. Paulonis, J.M. Oblak, and D.S. Duvall, Precipitation in Nickel-Base Alloy 718, Trans. ASM, 1969, 62(3), p 611–622

    Google Scholar 

  35. R. Cozar and A. Pineau, Morphology of y’ and y” Precipitates and Thermal Stability of Inconel 718 Type Alloys, Metall. Trans., 1973, 4(1), p 47–59

    Article  Google Scholar 

  36. G. Venkataraman and F. Cosandey, Creep Behavior of Ni-Cr Alloys with Trace Additions of Cerium, Mater. Sci. Eng., 1987, 93, p 175–179

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all the financial support gave from CAPES and technical/scientifical advice from LME/LNNano/CNPEM Process Number 15053. Especial thanks to Tarcila Sugahara and Fabiano Emmanuel Montoro. This work is dedicated to the memory of Prof. Carlos de Moura Neto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Rocha Caliari.

Additional information

Dedicated to the memory of Prof. Carlos de Moura Neto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliari, F.R., Candioto, K.C.G., Couto, A.A. et al. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718. J. of Materi Eng and Perform 25, 2307–2317 (2016). https://doi.org/10.1007/s11665-016-2051-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2051-2

Keywords

Navigation