Skip to main content

Advertisement

Log in

Microstructure, Bio-corrosion Behavior, and Corrosion Residual Strength of High Strain Rate Rolled Mg-4Zn Alloy Sheet

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure, bio-corrosion behavior, and corrosion residual strength in 0.9 wt.% NaCl solution of the fine-grained Mg-4Zn alloy sheet prepared by high strain rate rolling are systematically investigated. The as-rolled alloy has fine homogenous dynamic recrystallization grains with the average grain size of 4.5 μm. It has different bio-corrosion behavior from the as-cast and is the most corrosion resistant except for pure Mg. Its in vitro strength loss is about 19% after 7 days immersion (the as-cast, 62%), and corrosion residual strength after 15 days immersion is 205 MPa. Its in vitro strength loss after 15, 30, and 60 days immersion are 24, 37, and 38% respectively. The as-rolled Mg-4Zn alloy is featured with the slighter in vitro loss of mechanical integrity due to uniform bio-corrosion and is desirable for the usage in the field of bone fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    Article  Google Scholar 

  2. L. Tan, X. Yu, P. Wan, and K. Yang, Biodegradable Materials for Bone Repairs: A Review, J. Mater. Sci. Technol., 2013, 29, p 503–513

    Article  Google Scholar 

  3. I. Popov, D. Starosvetsky, and D. Shechtman, Initial Stages of Corrosion Within Mg-Zn-Y-Zr Alloy in 1g/l NaCl Solution, J. Mater. Sci., 2000, 35, p 1–8

    Article  Google Scholar 

  4. G. Song, Control of Biodegradation of Biocompatible Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701

    Article  Google Scholar 

  5. M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314

    Article  Google Scholar 

  6. H. Li, Q.M. Peng, X.J. Li, K. Li, Z.S. Han, and D.Q. Fang, Microstructures, Mechanical and Cytocompatibility of Degradable Mg-Zn Based Orthopedic Biomaterials, Mater. Design, 2014, 58, p 43–51

    Article  Google Scholar 

  7. J. Kubásek, D. Vojtěch, J. Lipov, and T. Ruml, Structure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Biodegradable Mg-X (X=Sn, Ga, In) Alloys, Mater. Sci. Eng. C, 2013, 33, p 2421–2432

    Article  Google Scholar 

  8. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, and S. Delfino, Bio-corrosion Characterization of Mg-Zn-X(X=Ca, Mn, Si) Alloys for Biomedical Applications, J. Mater. Sci., 2010, 21, p 1091–1098

    Google Scholar 

  9. W.W. He, E.L. Zhang, and K. Yang, Effect of Y on the Bio-corrosion Behavior of Extruded Mg-Zn-Mn Alloy in Hank’s Solution, Mater. Sci. Eng. C, 2010, 10, p 167–174

    Article  Google Scholar 

  10. S.X. Zhang, J.N. Li, Y. Song, C.L. Zhao, X.N. Zhang, C.Y. Xie, Y. Zhang, H.R. Tao, Y.H. He, Y. Jiang, and Y.J. Bian, In Vitro Degradation, Hemolysis and MC3T3-E1 Cell Adhesion of Biodegradable Mg-Zn Alloy, Mater. Sci. Eng. C, 2009, 29, p 1907–1912

    Article  Google Scholar 

  11. B.P. Zhang. Research on Mg-Zn-Ca Alloys as Degradable Materials, Doctor Thesis, Harbin University of Technology, 2010.

  12. Y.H. Gu, S. Bandopadhyay, C.F. Chen, C.Y. Ning, and Y.J. Guo, Long-Term Corrosion Inhibition Mechanism of Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Mater. Design, 2013, 46, p 66–75

    Article  Google Scholar 

  13. H. Zhao, S. Cai, S.X. Niu, R.Y. Zhang, X.D. Wu, G.H. Xu, and Z.T. Ding, The Influence of Alkali Pretreatments of AZ31 Magnesium Alloys on Bonding of Bioglass-Ceramic Coatings and Corrosion Resistance for Biomedical Applications, Ceram. Int., 2015, 41(3), p 4590–4600

    Article  Google Scholar 

  14. H.M. Wong, K.W.K. Yeung, K.O. Lam, V. Tam, P.K. Chu, K.D.K. Luk, and K.M.C. Cheung, A Biodegradable Polymer-Based Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants, Biomaterials, 2010, 31, p 2084–2096

    Article  Google Scholar 

  15. X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, and W.H. Wang, Corrosion of, and Cellular Responses to Mg-Zn-Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103

    Article  Google Scholar 

  16. B. Zberg, P.J. Uggowitzer, and J.F. Löffler, MgZnCa Glasses Without Clinically Observable Hydrogen Evolution for Biodegradable Implants, Nat. Mater., 2009, 8, p 887–891

    Article  Google Scholar 

  17. H. Wang, Y. Estrin, and Z. Zúberová, Bio-corrosion of a Magnesium Alloy with Different Processing Histories, Mater. Lett., 2008, 62, p 2476–2479

    Article  Google Scholar 

  18. S. Koleini, M.H. Idris, and H. Jafari, Influence of Hot Rolling Parameters on Microstructure and Biodegradability of Mg-1Ca Alloy in Simulated Body Fluid, Mater. Design, 2012, 33, p 20–25

    Article  Google Scholar 

  19. Z. Wei, S. Tian, and N.N. Aung, Effect of Heat Treatment on Corrosion Behaviour of Magnesium Alloy AZ91D in Simulated Body Fluid, Corros. Sci., 2010, 52, p 1035–1041

    Article  Google Scholar 

  20. M. Alvarez-Lopez, M.D. Pereda, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, and M.L. Escudero, Corrosion Behaviour of AZ31 Magnesium Alloy with Different Grain Sizes in Simulated Biological Fluids, Acta Biomater., 2010, 6, p 1763–1771

    Article  Google Scholar 

  21. Z.W. Ren, S.K. Guan, Y.F. Sun, et al. Microstructure and Properties of Biomagnesium Alloy by High Pressure Torsion, The 12th Chinese Conference on Biomaterials, December 4-7, 2009, China, E-23

  22. J. Fan, X. Qiu, X.D. Niu, Z. Tian, W. Sun, X.J. Liu, Y.D. Li, W.R. Li, and J. Meng, Microstructure, Mechanical Properties, In Vitro Degradation and Cytotoxicity Evaluations of Mg-1.5Y-1.2Zn-0.44Zr Alloys for Biodegradable Metallic Implants, Mater. Sci. Eng. C, 2013, 33, p 2345–2352

    Article  Google Scholar 

  23. G.B. Hamu, D. Eliezer, and L. Wagner, The Relation Between Severe Plastic Deformation Microstructure and Corrosion Behavior of AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 468, p 222–229

    Article  Google Scholar 

  24. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, and J. Tian, Effect of Twinning and Dynamic Recrystallization on the High Strain Rate Rolling Process, Scr. Mater., 2010, 63(10), p 985–988

    Article  Google Scholar 

  25. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du, and X.Z. Liao, Feasibility of High Strain-Rate Rolling of a Magnesium Alloy Across a Wide Temperature Range, Scr. Mater., 2012, 67, p 404–407

    Article  Google Scholar 

  26. S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, Y.G. Du, and X.Z. Liao, Fabrication of Mg-Al-Zn-Mn Alloy Sheets with Homogeneous Fine-Grained Structures Using High Strain-Rate Rolling in a Wide Temperature Range, Mater. Sci. Eng. A, 2013, 559(1), p 765–772

    Article  Google Scholar 

  27. M. Erinc, W. Sillekens, Magnesium Technology 2009, E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, et al, Eds., Springer, Hamburg, 2009, p 209-214.

  28. M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Achieving High Strength in Commercial Mg Cast Alloys Through Large Strain Rolling, Mater. Lett., 2005, 59, p 3299–3303

    Article  Google Scholar 

  29. K. Kubota, M. Mabuchi, and K. Higashi, Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys, J. Mater. Sci., 1999, 34, p 2255–2262

    Article  Google Scholar 

  30. G.Q. Li, G.H. Wu, Y. Fan, and W.J. Ding, Effect of the Main Alloying Elements on Microstructure and Corrosion Resistance of Magnesium Alloys, Foundry Technol., 2006, 27(1), p 81–82. (in Chinese)

    Google Scholar 

  31. Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg-xZn Alloys, Corros. Sci., 2012, 65, p 322–330

    Article  Google Scholar 

  32. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion Behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 589–594

    Article  Google Scholar 

  33. E. Koç, M.B. Kannan, M. Ünal, and E. Candan, Influence of Zinc on the Microstructure, Mechanical Properties and In Vitro Corrosion Behavior of Magnesium–Zinc Binary Alloys, J. Alloys Compd., 2015, 648, p 291–296

    Article  Google Scholar 

  34. J.S. Liao, M. Hotta, and N. Yamamoto, Corrosion Behavior of Fine-Grained AZ31B Magnesium Alloy, Corros. Sci., 2012, 61, p 208–214

    Article  Google Scholar 

  35. Q. Wang, Y.H. Liu, X.Y. Zhu, S. Li, S. Yu, L. Zhang, and Y.L. Song, Study on the Effect of Corrosion on the Tensile Properties of the 1.0 wt.% Yttrium Modified AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2009, 517(1), p 239–245

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of the Natural Science Foundation Project of China (51571089), the Young Teacher Growth Fund of Hunan University (531107021095) and the National SIT Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Chen, J., Yan, H. et al. Microstructure, Bio-corrosion Behavior, and Corrosion Residual Strength of High Strain Rate Rolled Mg-4Zn Alloy Sheet. J. of Materi Eng and Perform 25, 1974–1985 (2016). https://doi.org/10.1007/s11665-016-2041-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2041-4

Keywords

Navigation