Skip to main content
Log in

Ultrahigh Strength Copper Obtained by Surface Mechanical Attrition Treatment at Cryogenic Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the effect of dynamic recovery on the mechanical properties of copper (Cu) during surface mechanical attrition treatment (SMAT) at both room temperature (RT) and cryogenic temperature (CT). Copper sheets were processed by SMAT at RT and at CT for 5, 15, and 30 min, respectively. The Cu samples after SMAT at RT for 30 min exhibited better ductility but lower strength than the samples after SMAT at CT for 30 min due to dynamic recovery. X-ray diffraction analysis indicated that decreasing temperature during SMAT led to an increase in the twin and dislocation densities. In addition, a thicker gradient structure layer with finer grains was obtained in the SMAT-processed Cu samples at CT than at RT. The results indicated that SMAT at CT can effectively suppress the occurring of dynamic recovery and produce ultrahigh strength pure copper without seriously sacrificing its ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Lugo, N. Llorca, J.M. Cabrera, and Z. Horita, Microstructures and Mechanical Properties of Pure Copper Deformed Severely by Equal-Channel Angular Pressing and High Pressure Torsion, Mater. Sci. Eng. A, 2008, 477(1), p 366–371

    Article  Google Scholar 

  2. Sh.R. Bahadori, K. Dehghani, and F. Bakhshandeh, Microstructure, Texture and Mechanical Properties of Pure Copper Processed by ECAP and Subsequent Cold Rolling, Mater. Sci. Eng. A, 2013, 583, p 36–42

    Article  Google Scholar 

  3. K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2004, 375–377, p 38–45

    Article  Google Scholar 

  4. Y.S. Li, N.R. Tao, and K. Lu, Microstructural Evolution and Nanostructure Formation in Copper During Dynamic Plastic Deformation at Cryogenic Temperatures, Acta Mater., 2008, 56(2), p 230–241

    Article  Google Scholar 

  5. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu, Plastic Strain-Induced Grain Refinement at the Nanometer Scale in Copper, Acta Mater., 2006, 54(19), p 5281–5291

    Article  Google Scholar 

  6. K.A. Darling, M.A. Tschopp, A.J. Roberts, J.P. Ligda, and L.J. Kecskes, Enhancing Grain Refinement in Polycrystalline Materials Using Surface Mechanical Attrition Treatment at Cryogenic Temperatures, Scr. Mater., 2013, 69(6), p 461–464

    Article  Google Scholar 

  7. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development—Properties—Application, Int. J. Plast., 2000, 16(10), p 1391–1409

    Article  Google Scholar 

  8. G. Frommeyer, U. Brux, and P. Neumann, Supra-ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43(3), p 438–446

    Article  Google Scholar 

  9. X.Y. San, X.G. Liang, L.P. Cheng, C.J. Li, and X.K. Zhu, Effect of Stacking Fault Energy on Mechanical Behavior of Cold-Forging Cu and Cu Alloys, Mater. Des., 2013, 35, p 480–483

    Article  Google Scholar 

  10. C.B. Cater and I.L.F. Ray, On the Stacking-Fault Energies of Copper Alloys, Philos. Mag., 1977, 35(1), p 189–200

    Article  Google Scholar 

  11. L. Lu, Z.S. You, and K. Lu, Work Hardening of Polycrystalline Cu with Nanoscale Twins, Scr. Mater., 2012, 66(11), p 837–842

    Article  Google Scholar 

  12. Y.T. Zhu, X.Z. Liao, and X.L. Wu, Deformation Twinning in Nanocrystalline Materials, Prog. Mater. Sci., 2012, 57(1), p 1–62

    Article  Google Scholar 

  13. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Synergetic STRENGTHENING by Gradient Structure, Mater. Res. Lett., 2014, 2(4), p 185–191

    Article  Google Scholar 

  14. E. Ma, Y.M. Wang, Q.H. Lu, and L. Lu, Strain Hardening and Large Tensile Elongation in Ultrahigh-Strength Nano-twinned Copper, Appl. Phys. Lett., 2004, 85(21), p 4932–4934

    Article  Google Scholar 

  15. L.H. Qian, S.C. Wang, Y.H. Zhao, and K. Lu, Microstrain Effect on Thermal Properties of Nanocrystalline Cu, Acta Mater., 2002, 50(13), p 3425–3434

    Article  Google Scholar 

  16. S. Ni, Y.B. Wang, X.Z. Liao, R.B. Figueiredo, H.Q. Li, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, T.G. Langdon, and Y.T. Zhu, Strain Softening in Nanocrystalline Ni-Fe Alloy Induced by Large HPT Revolutions, Mater. Sci. Eng. A, 2011, 528(13), p 4807–4811

    Article  Google Scholar 

  17. K. Edalati, J.M. Cubero-Sesin, A. Alhamidi, I.F. Mohamed, and Z. Horita, Influence of Severe Plastic Deformation at Cryogenic Temperature on Grain Refinement and Softening of Pure Metals: Investigation Using High-Pressure Torsion, Mater. Sci. Eng. A, 2014, 613, p 103–110

    Article  Google Scholar 

  18. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures, Wiley-VCH, New York, 1974, p 618–677

    Google Scholar 

  19. Y.H. Zhao, K. Zhang, and K. Lu, Structure Characteristics of Nanocrystalline Element Selenium with Different Grain Sizes, Phys. Rev. B, 1997, 56(22), p 322–329

    Google Scholar 

  20. Y.H. Zhao, H.W. Sheng, and K. Lu, Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition, Acta Mater., 2001, 49(2), p 365–375

    Article  Google Scholar 

  21. R. Smallman and K. Westmacott, Stacking Faults in Face-Centred Cubic Metals and Alloys, Philos. Mag., 1957, 2(7), p 669–683

    Article  Google Scholar 

  22. G. Williamson and R. Smallman, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46

    Article  Google Scholar 

  23. Y.H. Zhao, X.Z. Liao, and Z. Horita, Determining the Optimal Stacking Fault Energy for Achieving High Ductility in Ultrafine-Grained Cu-Zn Alloys, Mater. Sci. Eng. A, 2008, 493(1), p 123–129

    Article  Google Scholar 

  24. Y.H. Zhao, K. Lu, and K. Zhang, Microstructure Evolution and Thermal Properties in Nanocrystalline Cu During Mechanical Attrition, Phys. Rev. B, 2002, 66(8), p 085404

    Article  Google Scholar 

  25. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52(15), p 4589–4599

    Article  Google Scholar 

  26. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, and K. Lu, Nano-sized Twins Induce High Rate Sensitivity of Flow Stress in Pure Copper, Acta Mater., 2005, 53(7), p 2169–2179

    Article  Google Scholar 

  27. J. Guo, K. Wang, and L. Lu, Tensile Properties of Cu with Deformation Twins Induced by SMAT, J. Mater. Sci. Technol., 2006, 22(6), p 789–792

    Article  Google Scholar 

  28. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad Sci. USA, 2014, 111(20), p 7197–7201

    Article  Google Scholar 

  29. Y.M. Wang and E. Ma, Temperature and Strain Rate Effects on the Strength and Ductility of Nanostructured Copper, Appl. Phys. Lett., 2003, 83(15), p 3165–3167

    Article  Google Scholar 

  30. K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497(1), p 168–173

    Article  Google Scholar 

  31. X.Y. San, X.G. Liang, L.P. Cheng, C.J. Li, and X.K. Zhu, Temperature Effect on Mechanical Properties of Cu and Cu Alloys, Mater. Des., 2012, 35, p 480–483

    Article  Google Scholar 

  32. K. Hanazaki, N. Shigeiri, and N. Tsuji, Change in Microstructures and Mechanical Properties During Deep Wire Drawing of Copper, Mater. Sci. Eng. A, 2010, 527(21), p 5699–5707

    Article  Google Scholar 

  33. L. Lu, L.B. Wang, B.Z. Ding, and K. Lu, High-Tensile Ductility in Nanocrystalline Copper, J. Mater. Res., 2000, 15(02), p 270–273

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51561015 and 51361017). We also greatly appreciate prof. Y. T. Zhu from North Carolina State University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wen, C., Yang, X. et al. Ultrahigh Strength Copper Obtained by Surface Mechanical Attrition Treatment at Cryogenic Temperature. J. of Materi Eng and Perform 24, 5058–5064 (2015). https://doi.org/10.1007/s11665-015-1797-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1797-2

Keywords

Navigation