Skip to main content
Log in

Effect of pH, Surfactant, and Heat Treatment on Morphology, Structure, and Hardness of Electrodeposited Co-P Coatings

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nano-crystalline and amorphous Co-P coatings were deposited on plain carbon steel substrates by using direct current. Effects of electrolyte pH on morphology, current efficiency, phosphorus content, hardness, and preferred orientation of the nano-crystalline coatings were investigated. Moreover, the effects of heat treatment on microstructure and hardness of the nano-crystalline and the amorphous coatings were studied. The results showed that, phosphorus content and hardness of the nano-crystalline coatings were decreased by increasing of the pH, in spite of a current efficiency enhancement to as much as 98%. Grain size and preferred orientation were also changed from 13 to 31 nm and from mostly [002] to [100] by increasing the pH from 1 to 4, respectively. Smoother coatings and higher current efficiencies were obtained by the addition of 1 g/L sodium dodecyl sulfate (SDS) to the bath. Highest hardness of the nano-crystalline and the amorphous coatings was about 600 and 750 HV, which increased and reached 760 and 1090 HV after heat treatment, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.M. Tyler, Automotive Applications for Chromium, J. Met. Finish., 1995, 93, p 11–14

    Article  Google Scholar 

  2. R.A. Prado, D. Facchini, N. Mahalanobis, F. Gonzalez, and G. Palumbo, Electrodeposition of Nanocrystalline Cobalt Alloy Coatings as A Hard Chromium Alternative, Proc DoD Corrosion Conference, Washington, DC, 2009, 2009, p 1–13

    Google Scholar 

  3. M. Moline, M. Yager, G.S. Juliana, N. Mahalanobis, D. Facchini, F. Gonzalez, and K. Tomantschger, Industrial Implementation of Nanostructured Cobalt-Phosphorus Coatings at Enduro Industries LLC, Proc SUR/FIN 2011, Rosemont, IL, 2011

    Google Scholar 

  4. V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan, Characterization and Corrosion Behavior of Co and Co-P Coatings Electrodeposited from Chloride Bath, RSC Adv., 2014, 4, p 46293–46304

    Article  Google Scholar 

  5. H. Seenivasan, P. Bera, K.S. Rajam, and S.K. Parida, Characterization and Hardness of Co-P Coatings Obtained from Direct Current Electrodeposition Using Gluconate Bath, Surf. Rev. Lett., 2013, 20, p 1350049–1350061

    Article  Google Scholar 

  6. A. Brenner, Electrodeposition of Alloy, Academic Press, New York, 1963

    Google Scholar 

  7. B.P. Daly and F.J. Barry, Electrochemical Nickel-Phosphorus Alloy Formation, Int. Mater. Rev., 2008, 48, p 326–338

    Article  Google Scholar 

  8. G.D. Hibbard, K.T. Aust, and U. Erb, The Effect of Starting Nanostructure on the Thermal Stability of Electrodeposited Nanocrystalline Co, Acta Mater., 2006, 54, p 2501–2510

    Article  Google Scholar 

  9. J.P. Sinnecker, M. Knobel, K.R. Pirota, J.M. Garcia, A. Asenjo, and M. Vazquez, Frequency Dependence of the Magnetoimpedance in Amorphous CoP Electrodeposited Layers, J. Appl. Phys., 2000, 87, p 4825–4827

    Article  Google Scholar 

  10. X. Xu and G. Zangari, Magnetic Anisotropy and Crystal Structure of Co-P Films Synthesized by Electrodeposition from Alkaline Electrolytes, J. Appl. Phys., 2006, 99, p 08M304

    Google Scholar 

  11. N. Fukumuro, J. Nishyama, K. Shigeta, Y. Moritomo, and H. Takagami, Co-P Multilayer Film Electrodeposited Under DC Electrolysis, Electrochem. Commun., 2007, 9, p 1185–1188

    Article  Google Scholar 

  12. P.L. Cavallotti, M. Bestetti, S. Franz, and A. Vicenzo, Nano-Electrodeposition for Hard Magnetic Layers, Trans. Inst. Met. Finish., 2010, 88, p 28–34

    Article  Google Scholar 

  13. I. Kosta, E. Vallés, E. Gómez, M. Sarret, and C. Müller, Nanocrystalline CoP Coatings Prepared by Different Electrodeposition Techniques, Mater. Lett., 2011, 65, p 2849–2851

    Article  Google Scholar 

  14. X. Xu, and G. Zangari, Electrodeposition of CoP Film from Alkaline Electrolytes. In: 208th ECS Meeting, Los Angeles, CA, 2005, Abstract No. 640

  15. M. Aspland, G.A. Jones, and B.K. Middleton, Properties of Electroless Cobalt Film, IEEE Trans. Magn., 1969, 5, p 314–317

    Article  Google Scholar 

  16. C.H. Wang, S.E. Huang, and C.W. Chiu, Influence of the P Content on Phase Formation in the Interfacial Reactions Between Sn and Electroless Co(P) Metallization on Cu Substrate, J. Alloys Compd., 2015, 619, p 474–480

    Article  Google Scholar 

  17. X. Zhang, J. Zhao, F. Cheng, J. Liang, Z. Tao, and J. Chen, Electroless-Deposited Co-P Catalysts for Hydrogen Generation from Alkaline NaBH4 Solution, Int. J. Hydrogen Energy, 2010, 35, p 8363–8369

    Article  Google Scholar 

  18. H.C. Wang, G.H. Yu, J.L. Cao, and L.J. Wang, Electroless Plating Co-P Films for High Performance Magnetic Rotary Encoders, Sens. Actuator A, 2011, 165, p 216–220

    Article  Google Scholar 

  19. H. Jung and A. Alfantazi, Corrosion Behavior of Nanocrystalline Co and Co-P Alloys in a NaOH Solution, Corros. NACE, 2010, 66, p 035002–35014

    Article  Google Scholar 

  20. V. Selvi, H. Seenivasan, and S.K. Rajam, Electrochemical Corrosion Behavior of Pulse and DC Electrodeposited Co-P Coatings, Surf. Coat. Technol., 2012, 206, p 2199–2206

    Article  Google Scholar 

  21. M.A. Sheikholeslam, M.H. Enayati, and K. Raeissi, Characterization of Nanocrystalline and Amorphous Cobalt-Phosphorous Electrodeposits, Mater. Lett., 2008, 62, p 3629–3631

    Article  Google Scholar 

  22. M. da Silva, C. Wille, U. Klement, P. Choi, and T. Al-Kassab, Electrodeposited Nanocrystalline Co-P Alloy: Microstractural Characterization and Thermal Stability, Mater. Sci. Eng. A., 2007, 445-446, p 31–39

    Article  Google Scholar 

  23. J.H. Kim, M. Raja, S. Thanikaikarasan, Y.D. Kim, S.R. Srikumar, and T. Mahalingam, Effect of NaCl concentration in electrodeposited Cod Coposited Coticle, Appl. Surf. Sci., 2009, 255, p 6540–6544

    Article  Google Scholar 

  24. K.S. Lew, M. Raja, S. Thanikaikarasan, T. Kim, Y.D. Kim, and T. Mahalingam, Effect of pH and Current Density in Electrodeposited Coposited Coticle, Mater. Chem. Phys., 2008, 112, p 249–253

    Article  Google Scholar 

  25. A. Brenner, D.E. Couch, and E.K. Williams, Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt, Nat. Bur. Stand., 1950, 44, p 109–122

    Article  Google Scholar 

  26. Y. Fukunaka, S. Aikawa, and Z. Asaki, Fundamental Study on Electrodeposition of Co and Co-P Films, J. Electrochem. Soc., 1994, 141, p 1783–1791

    Article  Google Scholar 

  27. I. Kosta, A. Vicenzo, C. Muller, and M. Sarret, Mixed Amorphous-Nanocrystalline Cobalt Phosphorous by Pulse Plating, Surf. Coat. Technol., 2012, 207, p 443–449

    Article  Google Scholar 

  28. V. Ravindran and V.S. Muralidharan, Zinc-Nickel alloy Electrodeposition—Influence of Triethanolamine, Port. Electrochim. Acta, 2007, 25, p 391–399

    Article  Google Scholar 

  29. X. Qiao, H. Li, W. Zhao, and D. Li, Effects of Deposition Temperature on Electrodeposition of Zinc-Nickel Alloy Coatings, Electrochim. Acta, 2013, 89, p 771–777

    Article  Google Scholar 

  30. B. Sturzenegger and J.C. Puippe, Electrodeposition of Palladium-Silver Alloys from Ammoniacal Electrolytes, Platin. Met. Rev., 1984, 28, p 117–124

    Google Scholar 

  31. N. Elezovic, B.N. Grgur, N.V. Krstajic, and V.D. Jovic, Electrodeposition and Characterization of Fe-Mo Alloys as Cathodes for Hydrogen Evolution in the Process of Chlorate Production, J. Serb. Chem. Soc., 2005, 70, p 879–889

    Article  Google Scholar 

  32. L. Shi, C.F. Sun, F. Zhou, and W.M. Liu, Electrodeposited Nickel-Cobalt Composite Coating Containing Nano-Sized Si3N4, Mater. Sci. Eng., 2005, 397, p 190–194

    Article  Google Scholar 

  33. W.C. Lin and C. Chen, Characteristics of Thin Surface Layers of Cobalt-Based Alloys Deposited by Laser Cladding, Surf. Coat. Technol., 2006, 200, p 4557–4563

    Article  Google Scholar 

  34. B. Aksaka, B. Dikic, and M. Gavgali, The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants, J. Mater. Eng. Perform., 2010, 6, p 894–899

    Article  Google Scholar 

  35. S. Mahdavi and S.R. Allahkaram, Characteristics of Electrodeposited Cobalt and Titania Nano-Reinforced Cobalt Composite Coatings, Surf. Coat. Technol., 2013, 232, p 198–203

    Article  Google Scholar 

  36. P. Bera, H. Seenivasan, K.S. Rajam, and V.K.W. Grips, Characterization of Amorphous Co-P Alloy Coatings Electrodeposited with Pulse Current Using Gluconate Bath, Appl. Surf. Sci., 2012, 258, p 9544–9553

    Article  Google Scholar 

  37. O. Karaagac, H. Kockar, and M. Alper, Electrodeposited Cobalt Film: Alteration Caused by the Electrolyte pH, J. Supercond. Novel Magn., 2011, 24, p 801–804

    Article  Google Scholar 

  38. T. Burchardt, The Effect of Deposition Temperature on the Catalytic Activity of Ni-P Alloys Toward the Hydrogen Reaction, Int. J. Hydrogen Energy, 2002, 27, p 323–328

    Article  Google Scholar 

  39. J. Wang, Y. Gao, T. Xu, and Q. Xue, A Comparative Study on the Tribological Behavior of Nanocrystalline Nickel and Cobalt Coatings Correlated with Grain Size and Phase Structure, Mater. Chem. Phys., 2006, 99, p 96–103

    Article  Google Scholar 

  40. A. Vicenzo and P.L. Cavallotti, Growth Modes of Electrodeposited Cobalt, Electrochim. Acta, 2004, 49, p 4079–4089

    Article  Google Scholar 

  41. A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palimbo, High Strength Nanocrystalline Cobalt with High Tensile Ductility, Scr. Mater., 2003, 49, p 651–656

    Article  Google Scholar 

  42. K.M. Hyie, N.A. Resalin, W.N.R. Abdullah, and W.T. Chong, Synthesis and Characterization of Nanocrystalline Pure Cobalt Coating: Effect of pH, Proced. Eng., 2012, 41, p 1627–1633

    Article  Google Scholar 

  43. R. Elansezhian, B. Ramamoorthy, and P. Kesavan Nair, The Influence of SDS and CTAB Surfactants on the Surface Morphology and Surface Topography of Electroless Ni-P Deposits, J. Mater. Process. Technol., 2009, 209, p 233–240

    Article  Google Scholar 

  44. B.H. Chen, L. Hong, Y. Ma, and T.M. Ko, Effect of Surfactants in An Electroless Nickel-Plating Bath on the Properties of Ni-P Alloy Deposits, Ind. Eng. Chem. Res., 2002, 41, p 2668–2678

    Article  Google Scholar 

  45. P. Choi, M. da Silva, U. Klement, T. Al-Kassab, and R. Kirchheim, Thermal Stability of Electrodeposited Nanocrystalline Co-1.1 at% P, Acta Mater., 2005, 53, p 4473–4481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Allahkaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeinali-Rad, M., Allahkaram, S.R. & Mahdavi, S. Effect of pH, Surfactant, and Heat Treatment on Morphology, Structure, and Hardness of Electrodeposited Co-P Coatings. J. of Materi Eng and Perform 24, 3209–3217 (2015). https://doi.org/10.1007/s11665-015-1599-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1599-6

Keywords

Navigation