Skip to main content

Advertisement

Log in

Machinability Evaluation of Ti-5Nb-xFe Alloys for Dental Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, we evaluated the machinability of a series of Ti-5Nb-xFe alloys with an Fe content ranging from 1 to 5 mass% and compared the results to those of commercially pure titanium (c.p. Ti) and Ti-6Al-4V. The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated using cutting force which was measured using a dynamometer. The experimental results indicate that the addition of Fe significantly affected the machinability of the Ti alloys in terms of cutting force under the present cutting conditions. Under certain conditions, the cutting force of Ti-5Nb-4Fe was lower than that of c.p. Ti and Ti-6Al-4V, a result which can be explained by a higher degree of hardness and greater amounts of ω phase. Ti-5Nb-4Fe also had a better surface finish: cutting marks were less apparent and metal chips did not adhere to the cut surfaces under cutting condition C (cutting speed: 1.83 m/s, feed rate: 0.0005 m/s, and depth of cut: 0.0002 m). Ti-5Nb-4Fe had the lowest average surface roughness (R a) after machining (approximately 0.27 μm under cutting condition C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Mori, T. Togaya, M. JeanLouis, and M. Yabugami, Titanium for Removable Dentures. I. Laboratory Procedures, J. Oral Rehabil., 1997, 24, p 338–341

    Article  Google Scholar 

  2. C. Ohkubo, I. Shimura, T. Aoki, S. Hanatani, T. Hosoi, M. Hattori, Y. Oda, and T. Okabe, Wear Resistance of Experimental Ti-Cu Alloys, Biomaterials, 2003, 24, p 3377–3381

    Article  Google Scholar 

  3. C. Ohkubo, S. Hanatani, and T. Hosoi, Present Status of Titanium Removable Dentures—A Review of the Literature, J. Oral Rehabil., 2008, 35, p 706–714

    Article  Google Scholar 

  4. M. Kikuchi, M. Takahashi, and O. Okuno, Machinability of Experimental Ti-Cu Alloys, Mater. Trans., 2008, 49, p 800–804

    Article  Google Scholar 

  5. M. Takahashi, M. Kikuchi, and Y. Takada, Mechanical Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys, Dent. Mater. J., 2002, 21, p 270–280

    Article  Google Scholar 

  6. M. Kikuchi, M. Takahashi, and O. Okuno, Machinability of Experimental Ti-Ag Alloys, Dent. Mater. J., 2008, 27, p 216–220

    Article  Google Scholar 

  7. W.F. Ho, A Comparison of Tensile Properties and Corrosion Behavior of Cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V Alloys, J. Alloys Compd., 2008, 464, p 580–583

    Article  Google Scholar 

  8. W.F. Ho, Effect of Omega Phase on Mechanical Properties of Ti-Mo Alloys for Biomedical Application, J. Med. Biol. Eng., 2008, 28, p 47–51

    Google Scholar 

  9. H.C. Hsu, S.C. Wu, T.Y. Chiang, and W.F. Ho, Structure and Grindability of Dental Ti-Cr Alloys, J. Alloys Compd., 2009, 476, p 817–825

    Article  Google Scholar 

  10. W.F. Ho, T.Y. Chiang, S.C. Wu, and H.C. Hsu, Evaluation of Low-Fusing Porcelain Bonded to Dental Cast Ti-Cr Alloys, J. Alloys Compd., 2009, 474, p 505–509

    Article  Google Scholar 

  11. H.C. Hsu, S.C. Wu, C.F. Wang, and W.F. Ho, Electrochemical Behavior of Ti-Cr Alloys in Artificial Saliva, J. Alloys Compd., 2009, 478, p 439–444

    Article  Google Scholar 

  12. W.F. Ho, W.K. Chen, S.C. Wu, and H.C. Hsu, Structure, Mechanical Properties and Grindability of Dental Ti-Zr Alloys, J. Mater. Sci. Mater. Med., 2008, 19, p 3179–3186

    Article  Google Scholar 

  13. M. Takahashi, M. Kikuchi, and O. Okuno, Grindability of Dental Cast Ti-Zr Alloys, Mater. Trans., 2009, 50, p 859–863

    Article  Google Scholar 

  14. H.C. Hsu, S.C. Wu, Y.S. Hong, and W.F. Ho, Mechanical Properties and Deformation Behavior of As-cast Ti-Sn Alloys, J. Alloys Compd., 2009, 479, p 390–394

    Article  Google Scholar 

  15. H.C. Hsu, H.C. Lin, S.C. Wu, Y.S. Hong, and W.F. Ho, Microstructure and Grindability of As-cast Ti-Sn Alloys, J. Mater. Sci., 2010, 45, p 1830–1836

    Article  Google Scholar 

  16. W.F. Ho, S.C. Wu, Y.S. Hong, and H.C. Hsu, Evaluation of the Machinability of Ti-Sn Alloys, J. Alloys Compd., 2010, 502, p 112–117

    Article  Google Scholar 

  17. H.C. Hsu, S.C. Wu, S.K. Hsu, Y.C. Li, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-Si Alloys, Intermetallics, 2014, 47, p 11–16

    Article  Google Scholar 

  18. P.R. Walker, J. LeBlanc, and M. Sikorska, Effects of Aluminum and Other Cations on the Structure of Brain and Liver Chromatin, Biochemistry, 1989, 28, p 3911–3915

    Article  Google Scholar 

  19. S. Yumoto, H. Ohashi, H. Nagai, S. Kakimi, Y. Ogawa, Y. Iwata, and K. Ishii, Aluminum Neurotoxicity in the Rat Brain, Int. J. PIXE, 1992, 2, p 493–504

    Article  Google Scholar 

  20. S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, and S. Asao, Effect of Ti, Al, and V Ions on the Relative Growth Rate of Fibroblasts (L929) and Osteoblasts (MC3T3-E1) Cells, Biomed. Mater. Eng., 1996, 6, p 79–86

    Google Scholar 

  21. H.C. Hsu, S.K. Hsu, S.C. Wu, C.J. Lee, and W.F. Ho, Structure and Mechanical Properties of As-Cast Ti-5Nb-xFe Alloys, Mater. Charact., 2010, 61, p 851–858

    Article  Google Scholar 

  22. K. Bordji, J.Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K.T. Rie, T. Stucky, and M. Hage-Ali, Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe Alloys According to Three Surface Treatments, Using Human Fibroblasts and Osteoblasts, Biomaterials, 1996, 17, p 929–940

    Article  Google Scholar 

  23. B.B. Zhang, B.L. Wang, Y.B. Wang, L. Li, Y.F. Zheng, and Y. Liu, Development of Ti-Ag-Fe Ternary Titanium Alloy for Dental Application, J. Biomed. Mater. Res. B, 2012, 100, p 185–196

    Article  Google Scholar 

  24. M. Khan, R. Williams, and D. Williams, The Corrosion Behaviour of Ti6Al4V, Ti6Al7Nb and Ti13Nb13Zr in Protein Solutions, Biomaterials, 1999, 20, p 631–637

    Article  Google Scholar 

  25. M. Kikuchi and O. Okuno, Machinability Evaluation of Titanium Alloys, Dent. Mater. J., 2004, 23, p 37–45

    Article  Google Scholar 

  26. M. Kikuchi, The Use of Cutting Temperature to Evaluate the Machinability of Titanium Alloys, Acta Biomater., 2009, 5, p 770–775

    Article  Google Scholar 

  27. A.B. Yu, L.J. Zhong, and Y.F. Tan, Machinability Evaluation of Machinable Ceramics with Fuzzy Theory, Trans. Nonferrous Met. Soc. China, 2005, 15, p 243–246

    Google Scholar 

  28. I. Watanabe, C. Ohkubo, J.P. Ford, M. Atsuta, and T. Okabe, Cutting Efficiency of Air-Turbine Burs on Cast Titanium and Dental Casting Alloys, Dent. Mater., 2000, 16, p 420–425

    Article  Google Scholar 

  29. M. Kikuchi, M. Takahashi, and O. Okuno, Mechanical Properties and Grindability of Dental Cast Ti-Nb Alloys, Dent. Mater. J., 2003, 22, p 328–342

    Article  Google Scholar 

  30. H.C. Hsu, S.C. Wu, C.H. Pan, H.W. Wang, and W.F. Ho, Grindability Evaluation of Dental Cast Ti-20Cr-X Alloys, J. Med. Biol. Eng., 2010, 3, p 73–78

    Google Scholar 

  31. W.F. Ho, C.H. Cheng, C.H. Pan, S.C. Wu, and H.C. Hsu, Structure, Mechanical Properties and Grindability of Dental Ti-10Zr-X Alloys, Mater. Sci. Eng. C, 2009, 29, p 36–43

    Article  Google Scholar 

  32. H.C. Hsu, C.H. Pan, S.C. Wu, and W.F. Ho, Structure and Grindability of Cast Ti-5Cr-xFe Alloys, J. Alloys Compd., 2009, 474, p 578–583

    Article  Google Scholar 

  33. A. Senthil Kumar, A. Raja Durai, and T. Sornakumar, Machinability of Hardened Steel Using Alumina Based Ceramic Cutting Tools, Int. J. Refract. Met. Hard Mater., 2003, 21, p 109–117

  34. J. Bellot, Steels with Improved Machinability, Met. Sci. Heat Treat., 1980, 22, p 794–799

    Article  Google Scholar 

  35. M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, and T. Okabe, Grindability of Cast Ti-Cu Alloys, Dent. Mater., 2003, 19, p 375–381

    Article  Google Scholar 

  36. K.L. Wang, M.W. Fu, S.Q. Lu, and X. Li, Study of the Dynamic Recrystallization of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy in β-Forging Process Via Finite Element Method Modeling and Microstructure Characterization, Mater. Des., 2011, 32, p 1283–1291

    Article  Google Scholar 

  37. I.A. Bagariatskii, G.I. Nosova, and T.V. Tagunova, Factors in the Formation of Metastable Phases in Titanium-Base Alloys, Sov. Phys. Dokl. (Engl. Transl.), 1959, 3, p 1014–1018

    Google Scholar 

  38. H.C. Hsu, S.C. Wu, S.K. Hsu, T.F. Lin, and W.F. Ho, Structure and Mechanical Properties of As-cast Ti-5Nb-xCr Alloys, Mater. Des., 2013, 51, p 268–273

    Article  Google Scholar 

  39. W.F. Ho, S.C. Wu, H.H. Chang, and H.C. Hsu, Structure and Mechanical Properties of Ti-5Cr Based Alloy with Mo Addition, Mater. Sci. Eng. C, 2010, 30, p 904–909

    Article  Google Scholar 

  40. W.F. Ho, C.H. Pan, S.C. Wu, and H.C. Hsu, Mechanical Properties and Deformation Behavior of Ti-5Cr-xFe Alloys, J. Alloys Compd., 2009, 472, p 546–550

    Article  Google Scholar 

  41. C.H. Cheng, H.C. Hsu, S.C. Wu, H.W. Wang, and W.F. Ho, Effects of Chromium Addition on Structure and Mechanical Properties of Ti-10Zr Alloy, J. Alloys Compd., 2009, 484, p 524–528

    Article  Google Scholar 

  42. I. Korkut, M. Boy, I. Karacan, and U. Seker, Investigation of Chip-back Temperature During Machining Depending on Cutting Parameters, Mater. Des., 2007, 28, p 2329–2335

    Article  Google Scholar 

  43. J.V.C. Souza, M.C.A. Nono, M.V. Ribeiro, J.P.B. Machado, and O.M.M. Silva, Cutting Forces in Turning of Gray Cast Iron Using Silicon Nitride Based Cutting Tool, Mater. Des., 2009, 30, p 2715–2720

    Article  Google Scholar 

  44. H. Takeyama, T. Yoshikawa, and T. Takada, Study on Machinability, J. Jpn. Soc. Precis. Eng., 1975, 41, p 392–394

    Article  Google Scholar 

  45. R. Grajower, I. Kurz, and M.S. Bapna, Cutting Times and Grinding Rates of Various Crown and Bridge Metals, Dent. Mater., 1986, 2, p 187–192

    Article  Google Scholar 

  46. M.H. Reisbick and R.F. Bunshah, Wear Characteristics of Burs, J. Dent. Res., 1973, 52, p 1138–1146

    Article  Google Scholar 

  47. W.J. O’Brien, Dental Materials: Properties and Selection, Quintessence, Chicago, 1989

    Google Scholar 

  48. C. Ohkubo, I. Watanabe, J.P. Ford, H. Nakajima, T. Hosoi, and T. Okabe, The Machinability of Cast Titanium and Ti-6Al-4V, Biomaterials, 2000, 21, p 421–428

    Article  Google Scholar 

  49. T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno, and Y. Oda, The Grindability and Wear of Ti-Cu Alloys for Dental Applications, J. Miner. Met. Mater. Soc., 2004, 56, p 46–48

    Article  Google Scholar 

  50. K.S. Chan, M. Koike, and T. Okabe, Grindability of Ti Alloys, Metall. Mater. Trans. A, 2006, 37, p 1323–1331

    Article  Google Scholar 

  51. W. Chen, Cutting Forces and Surface Finish When Machining Medium Hardness Steel Using CBN Tools, Int. J. Mach. Tools. Manufact., 2000, 40, p 455–466

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the partial financial support of Ministry of Science and Technology of Taiwan (NSC 97-2622-E-212-007-CC1; NSC 98-2622-E-212-001-CC1; NSC 99-2622-E-212-001-CC1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, HC., Wu, SC., Hsu, SK. et al. Machinability Evaluation of Ti-5Nb-xFe Alloys for Dental Applications. J. of Materi Eng and Perform 24, 1332–1339 (2015). https://doi.org/10.1007/s11665-014-1375-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1375-z

Keywords

Navigation