Skip to main content
Log in

Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We produced graphite nanoplatelets (GNP)/silicone resin composites at various loadings. The utilized GNPs were characterized by two-dimensional structure with high aspect ratio (~1810), and the GNP with approximately 10-30 nm thickness and 10-50 µm in length evenly dispersed throughout the resin matrix, which enables that GNPs effectively act as thermally conductive medium, thus contributed considerably to the formation of an efficient three-dimensional network for heat flow. The thermal conductivities of 5, 10, 15, and 20 wt.% GNP composite were 0.35, 1.02, 1.32, and 2.01 W/(m K), and were ca. 0.9, 4.7, 6.3, and 10.2 times higher than that of silicone resin at room temperature, respectively. The thermal conductivity decreased with elevated temperature in 25-200 °C, which was reminiscent at higher loading. Differential scanning calorimeter analysis showed that GNP addition increased the curing temperature of silicone resin from 90 to 119 °C, probably by hindering the free movement (mobility) of the silicone chains. The result showed that the GNP not only reduced the CTE but also improved the thermal stability of composite simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Raza, A.V.K. Westwood, and C. Stirling, Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, International Symposium on Advanced Packaging Materials: Microtech, APM ‘10, 2010, p 34–48

  2. J. Li, L. Vaisman, G. Marom, and J.K. Kim, Br Treated Graphite Nanoplatelets for Improved Electrical Conductivity of Polymer Composites, Carbon, 2007, 45(4), p 744–750

    Article  Google Scholar 

  3. D.L. Nika and A.A. Balandin, Two-Dimensional Phonon Transport in Graphene, J. Phys., 2012, 24, p 233203

    Google Scholar 

  4. Y.C. Li, S.C. Tjong, and R.K.Y. Li, Electrical Conductivity and Dielectric Response of Poly (Vinylidene Fluoride)-Graphite Nanoplatelet Composites, Synth. Met., 2010, 160, p 1912–1919

    Article  Google Scholar 

  5. B. Li and W.H. Zhong, Review on Polymer/Graphite Nanoplatelet Nanocomposites, J. Mater. Sci., 2011, 46, p 5595–5614

    Article  Google Scholar 

  6. N.K. Mahanta and A.R. Abramson, Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets, 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012, p 1–6

  7. M.A. Raza, A. Westwood, and C. Stirling, Carbon Black/Graphite Nanoplatelet/Rubbery Epoxy Hybrid Composites for Thermal Interface Applications, J. Mater. Sci., 2012, 47, p 1059–1070

    Article  Google Scholar 

  8. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8(3), p 902–907

    Article  Google Scholar 

  9. D.D.L. Chung, Review Graphite, J. Mater. Sci., 2002, 37(8), p 1475–1489

    Article  Google Scholar 

  10. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokalitov, C.N. Lau, and A.A. Balandin, Dimensional Crossover of Thermal Transport in Few-Layer Graphene, Nat. Mater., 2010, 9(7), p 555–558

    Article  Google Scholar 

  11. K.M.F. Shahil and A.A. Balandin, Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials, Nano Lett., 2012, 12, p 861–867

    Article  Google Scholar 

  12. A. Yasmin and I.M. Daniel, Mechanical and Thermal Properties of Graphite Platelet/Epoxy Composites, Polymer, 2004, 45, p 8211–8219

    Article  Google Scholar 

  13. K. Kalaitzidou, H. Fukushima, and L.T. Drzal, Multifunctional Polypropylene Composites Produced by Incorporation of Exfoliated Graphite Nanoplatelets, Carbon, 2007, 45, p 1446–1452

    Article  Google Scholar 

  14. W. Lin, R. Zhang, and C.P. Wong, Modeling of Thermal Conductivity of Graphite Nanosheet Composites, J. Electron. Mater., 2010, 39(3), p 268–272

    Article  Google Scholar 

  15. A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials, J. Phys. Chem. C, 2007, 111(21), p 7565–7569

    Article  Google Scholar 

  16. M.A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, Characterisation of Graphite Nanoplatelets and the Physical Properties of Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, Carbon, 2011, 49(13), p 4269–4279

    Article  Google Scholar 

  17. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, and R.C. Haddon, Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites, Adv. Mater., 2008, 20(24), p 4740–4744

    Article  Google Scholar 

  18. T. Zhou, X. Wang, P. Cheng, T. Wang, D. Xiong, and X. Wang, Improving the Thermal Conductivity of Epoxy Resin by the Addition of a Mixture of Graphite Nanoplatelets and Silicon Carbide Microparticles, Express Polym. Lett., 2013, 7(7), p 585–594

    Article  Google Scholar 

  19. S. Ganguli, A. Roy, and D.P. Anderson, Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites, Carbon, 2008, 46(5), p 806–817

    Article  Google Scholar 

  20. A.A. Moussa and K. Mullen, Using Normal Modes to Calculate and Optimize Thermal Conductivity in Functionalized Macromolecules, Phys. Rev. E, 2011, 83(5), p 056708

    Article  Google Scholar 

  21. M.A. Raza, A.V.K. Westwood, A.P. Brown, and C. Stirling, Texture, Transport and Mechanical Properties of Graphite Nanoplatelet/Silicone Composites Produced by Three Roll Mill, Compos. Sci. Technol., 2012, 72, p 467–475

    Article  Google Scholar 

  22. A.A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater., 2011, 10, p 569–581

    Article  Google Scholar 

  23. G.D. Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, and M.S. Sarto, Electromagnetic Properties of Composites Containing Graphite Nanoplatelets at Radio Frequency, Carbon, 2011, 49, p 4291–4300

    Article  Google Scholar 

  24. K. Efimenko, W.E. Wallace, and J. Genzer, Surface Modification of Sylgard-184 Poly(Dimethyl Siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment, J. Colloid Interf. Sci., 2002, 254, p 306–315

    Article  Google Scholar 

  25. F. He, J. Fan, and S. Lau, Thermal, Mechanical, and Dielectric Properties of Graphite Reinforced Poly (Vinylidene Fluoride) Composites, Polym. Test., 2008, 27, p 964–970

    Article  Google Scholar 

  26. A. Milev, M. Wilson, G.S.K. Kannangara, and N. Tran, X-ray Diffraction Line Profile Analysis of Nanocrystalline Graphite, Mater. Chem. Phys., 2008, 111, p 346–350

    Article  Google Scholar 

  27. F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 1970, 53, p 1126–1130

    Article  Google Scholar 

  28. R.P. Vidano, D.B. Fischbach, L.J. Willis, and T.M. Loehr, Observation of Raman Band Shifting with Excitation Wavelength for Carbons and Graphites, Solid State Commun., 1981, 39(2), p 341–344

    Article  Google Scholar 

  29. X. Wang and W. Dou, Preparation of Graphite Oxide (GO) and the Thermal Stability of Silicone Rubber/GO Nanocomposites, Thermochim. Acta, 2012, 529, p 25–28

    Article  Google Scholar 

  30. C. Min, D. Yu, J. Cao, G. Wang, and L. Feng, A Graphite Nanoplatelet/Epoxy Composite with High Dielectric Constant and High Thermal Conductivity, Carbon, 2013, 55, p 116–125

    Article  Google Scholar 

  31. V. Goyal and A.A. Balandin, Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials, Appl. Phys. Lett., 2012, 100, p 073113

    Article  Google Scholar 

  32. S. Yu, P. Hing, and X. Hu, Thermal Conductivity of Polystyrene-Aluminum Nitride Composite, Compos. Part A, 2002, 33(2), p 289–292

    Article  Google Scholar 

  33. P. LeBaron, Z. Wang, and T.J. Pinnavaia, Polymer-Layered Silicate Nanocomposites: An Overview, Appl. Clay Sci., 1999, 15(1–2), p 11–29

    Article  Google Scholar 

  34. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and Properties of Polyimide-Clay Hybrid, J. Polym. Sci. Polym. Chem., 2003, 31(10), p 2493–2498

    Article  Google Scholar 

  35. Q. Mu and S. Feng, Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation, Thermochim. Acta, 2007, 462(1–2), p 70–75

    Article  Google Scholar 

  36. B. Debelak and K. Lafdi, Use of Exfoliated Graphite Filler to Enhance Polymer Physical Properties, Carbon, 2007, 45(9), p 1727–1734

    Article  Google Scholar 

  37. E.T. Swartz and R.O. Pohl, Thermal Boundary Resistance, Rev. Mod. Phys., 1989, 61, p 605–668

    Article  Google Scholar 

  38. J. Xu, K.M. Razeeb, and S. Roy, Thermal Properties of Single Walled Carbon Nanotube-Silicone Nanocomposites, J. Polym. Sci. Polym. Phys., 2008, 46(17), p 1845–1852

    Article  Google Scholar 

  39. P.J. Yoon, T.D. Fornes, and D.R. Paul, Thermal Expansion Behavior of Nylon 6 Nanocomposites, Polymer, 2002, 43(25), p 6727–6741

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51276044), the Guangdong Provincial Natural Science Foundation of China (Nos. 9251009001000006, S2013010015994).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Zhang, H., Tang, M. et al. Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite. J. of Materi Eng and Perform 24, 920–929 (2015). https://doi.org/10.1007/s11665-014-1356-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1356-2

Keywords

Navigation