Skip to main content

Advertisement

Log in

Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting, J. Mater. Process. Technol., 2001, 111, p 210–213

    Article  Google Scholar 

  2. G.N. Levy, The Role and Future of the Laser Technology in Additive Manufacturing Environment, Phys. Procedia, 2010, 5, p 65–80

    Article  Google Scholar 

  3. M. Shellabear and O. Nyrhilä, DMLS—Development History and State of the Art, LANE 2004 Conference, Erlangen, Germany, Sept. 21-24, 2004

  4. M.S. Wong, C.J. Tsopanos, and I. Sutcliffe, Owen, Selective Laser Melting of Heat Transfer Devices, Rapid Prototyping J., 2007, 13(5), p 291–297

    Article  Google Scholar 

  5. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J Mech. Behav. Biomed., 2009, 2, p 20–32

    Article  Google Scholar 

  6. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256(13), p 4350–4356

    Article  Google Scholar 

  7. L. Facchini, N. Vicente, Jr., I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari, Metastable Austenite in 17–4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting, Adv. Eng. Mater., 2010, 12(3), p 184–189

    Article  Google Scholar 

  8. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, and A.K. Nath, Investigating Laser Rapid Manufacturing for Inconel-625 Components, Opt. Laser Technol., 2007, 39, p 800–805

    Article  Google Scholar 

  9. Z.H. Liu, D.Q. Zhang, and C.K. Chua, Crystal Structure Analysis of M2 High Speed Steel Parts Produced by Selective Laser Melting, Mater. Charact., 2013, 84, p 72–80

    Article  Google Scholar 

  10. A. Takaichi, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, and S. Migita, Microstructure and Mechanical Properties of Co-29Cr-6Mo Alloy Fabricated by Selective Laser Melting Process for Dental Applications, J. Mech. Behav. Biomed. Mater., 2013, 21, p 67–76

    Article  Google Scholar 

  11. S. Pauly, L. Loeber, R. Petters, M. Stoica, S. Scudino, U. Kuehn, and J. Eckert, Processing Metallic Glasses by Selective Laser Melting, Mater. Today, 2013, 16, p 37–41

    Article  Google Scholar 

  12. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, and T.B. Sercombe, Selective Laser Melting of an Al86Ni6Y4.5Co2La1.5 Metallic Glass: Processing, Microstructure Evolution and Mechanical Properties, Mater. Sci. Eng., A, 2014, 606, p 370–379

    Article  Google Scholar 

  13. D. Gu and Q. Jia, Novel Crystal Growth of In Situ WC in Selective Laser Melted W-C-Ni Ternary System, J. Am. Ceram. Soc., 2014, 97(3), p 684–687

    Article  Google Scholar 

  14. L. Thijs, M.L.M. Sistiaga, R. Wauthle, Q. Xie, J.P. Kruth, and J.V. Humbeeck, Strong Morphological and Crystallographic Texture and Resulting Yield Strength in Selective Melted Tantalum, Acta Mater., 2013, 61(12), p 4657–4668

    Article  Google Scholar 

  15. B. Song, S. Dong, and C. Coddet, Rapid In Situ Fabrication of Fe/SiC Nanocomposites by Selective Laser Melting Directly from a Mixed Powder of Microsized Fe and SiC, Scripta Mater., 2014, 75, p 90–93

    Article  Google Scholar 

  16. B. Vrancken, L. Thijis, J.P. Kruth, and J.V. Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158

    Article  Google Scholar 

  17. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill Inc., New York, 1993, p 328–335

    Google Scholar 

  18. M. Murayama, Y. Katayama, and K. Hono, Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400°C, Metall. Mater. Trans. A, 1999, 30A, p 345–353

    Article  Google Scholar 

  19. K.C. Hsu and C.K. Lin, High-Temperature Fatigue Crack Growth Behavior of 17-4 PH Stainless Steels, Metall. Mater. Trans. A, 2004, 35A, p 3018–3024

    Article  Google Scholar 

  20. P.G.E. Jerrard, L. Hao, and K.E. Evans, Experimentation Investigation into Selective Laser Melting of Austenitic and Martensitic Stainless Steel Powder Mixtures, J Manuf. Eng., 2009, 223(11), p 1409–1416

    Article  Google Scholar 

  21. J.H. Wu and C.K. Lin, Tensile and Fatigue Properties of 17-4 PH Stainless Steel at High Temperatures, Metall. Mater. Trans. A, 2002, 33A, p 1715–1724

    Article  Google Scholar 

  22. U.K. Viswanathan, S. Banerjee, and R. Krishnan, Effects of Aging on the Microstructure of 17-4 PH Stainless Steel, Mater. Sci. Eng., A, 1988, 104, p 181–189

    Article  Google Scholar 

  23. M. Shellabear and O. Nyrhila, Materials for Direct Metal Laser-Sintering, White Paper, EOS GmbH

  24. T.L. Starr, T.J. Gornet, J.S. Usher, and C. M. Scherzer, “DMLS Mechanical Properties: Tensile and Fatigue Properties of GP1,” EOS North America Users Day, May 17, 2010

  25. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312

    Article  Google Scholar 

  26. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42, p 3190–3199

    Article  Google Scholar 

  27. E.A. Ul’yanin, N.A. Sorokina, and M. Zaretskii Ya, Properties of Austenitic Steel with Nickel and Nitrogen at Low Temperatures, Met. Sci. Heat Treat., 1969, 11(9), p 681–682

    Article  Google Scholar 

  28. W. Wu, L.Y. Hwu, D.Y. Lin, and J.L. Lee, The Relationship Between Alloying Elements and Retained Austenite in Martensitic Stainless Steel Welds, Scripta Mater., 2000, 42, p 1071–1076

    Article  Google Scholar 

  29. H.J. Kim and Y.G. Kweon, The Effects of Retained Austenite on Dry Sliding Wear Behavior of Carburized Steels, Wear, 1996, 193(1), p 8–15

    Article  Google Scholar 

  30. A. Kokosza and J. Pacyna, Evaluation of Retained Austenite Stability in Heat Treated Cold Work Tool Steel, J. Mater. Process. Technol., 2005, 162, p 327–331

    Article  Google Scholar 

  31. A.K. Bhaduri, S. Sujith, G. Srinivasan, T.P.S. Gill, and S.L. Mannan, Optimized Post Weld Heat Treatment Procedures for 17-4 PH Stainless Steels, Weld. J. Res. Suppl., 1995, 51, p 153–159

    Google Scholar 

  32. B. Rajan, S. Roychowdhury, K. Vivekanand, and V.S. Raja, Effect of Reverted Austenite on Mechanical Properties of Precipitation Hardenable 17-4 Stainless Steel, Mater. Sci. Eng., A, 2013, 568, p 127–133

    Article  Google Scholar 

  33. S. Zhang and K.O. Findley, Quantitative Assessment of the Effects of Microstructure on the Stability of Retained Austenite in TRIP Steels, Acta Mater., 2013, 61(6), p 1895–1903

    Article  Google Scholar 

  34. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel, Mater. Trans., 2004, 45(7), p 2245–2251

    Article  Google Scholar 

  35. B.H. Jiang, L. Sun, R. Li, and T.Y. Hsu, Influence of Austenite Grain Size on γ-ε Martensitic Transformation Temperature in Fe-Mn-Si-Cr Alloys, Scripta Metall. Mater., 1995, 33(1), p 63–68

    Article  Google Scholar 

  36. R. Colaco and R. Vilar, Stabilisation of Retained Austenite in Laser Surface Melted Tool Steels, Mater. Sci. Eng., A, 2004, 385, p 123–127

    Article  Google Scholar 

  37. B. Vamsi Krishna and A. Bandyopadhyay, Surface Modification of AISI, 410 Stainless Steel Using Laser Engineered Net Shaping (LENS™), Mater. Des., 2009, 30, p 1490–1496

    Article  Google Scholar 

  38. R. Colaco and R. Vilar, Effect of the Processing Parameters on the Proportion of Retained Austenite in Laser Surface Melted Tool Steels, J. Mater. Sci. Lett., 1998, 17(7), p 563–567

    Article  Google Scholar 

  39. D. Das, A.K. Dutta, and K.K. Ray, Sub-zero Treatments of AISI, D2 steel: Part I. Microstructure and Hardness, Mater. Sci. Eng., A, 2010, 527, p 2182–2193

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Office of Naval Research for support through Grant Numbers N00014‐09‐1‐0147 and N00014‐10‐1‐0800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Khalid Rafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafi, H.K., Pal, D., Patil, N. et al. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting. J. of Materi Eng and Perform 23, 4421–4428 (2014). https://doi.org/10.1007/s11665-014-1226-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1226-y

Keywords

Navigation