Skip to main content
Log in

Generation of NiTi Nanoparticles by Femtosecond Laser Ablation in Liquid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

NiTi was investigated as a model system for a binary alloy where the properties strongly depend on the relative proportion of the two elements and on the grain size. The NiTi nanoparticles were generated by laser ablation in water. For the analysis of the particle size distribution, we used transmission electron microscopy and dynamic light scattering. Here, we found a broad particle size distribution (10-200 nm). Furthermore, the temperature-resolved x-ray powder diffraction and differential scanning calorimetry (DSC) were used to evaluate the phase transition behavior of the generated NiTi nanoparticles. Here, we found an interesting effect. During the heating by DSC, an austenite phase transition and a weak martensite phase transition in the NiTi nanoparticles appeared. Moreover, the phase transformation temperature was about 40 K lower than that of the bulk target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.C. Daniel et al., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, Applications toward Biology, Catalysis, Nanotechnology, Chem. Rev., 2004, 104, p 293–346

    Article  Google Scholar 

  2. X.H. Huang et al., Electrochemical Properties of NiO-Ni Nanocomposite as Anode Material for Lithium Ion Batteries, J. Power Source, 2006, 161(1), p 541–544

    Article  Google Scholar 

  3. C.J. Brinker et al., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, 1990

    Google Scholar 

  4. Y. Gogotsi, Nanomaterials Handbook, CRC Press, Boca Raton, 2006

    Book  Google Scholar 

  5. A. Hahn et al., Influences on Nanoparticle Production During Pulsed Laser Ablation, J. Laser Micro/Nanoeng., 2008, 4(1), p 51–54

    Article  Google Scholar 

  6. A.V. Kabashin et al., Synthesis of Colloidal Nanoparticles During Femtosecond Laser Ablation of Gold in Water, J. Appl. Phys., 2003, 94, p 7941–7943

    Article  Google Scholar 

  7. I. Lee et al., Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition, Chem. Commun., 2001, 18, p 1782–1783

    Article  Google Scholar 

  8. J. Jakobi, Stoichiometry of Alloy Nanoparticles from Laser Ablation of PtIr in Acetone and their Electrophoretic Deposition on PtIr Electrodes, IOP Sci. Nanotechnol., 2011, 22(14), p 1–7

    Google Scholar 

  9. S. Barcikowski et al., Biocompatibility of Nanoactuators: Stem Cell Growth on Laser-Generated Nickel-Titanium Shape Memory Alloy Nanoparticles, J. Nanopart. Res., 2010, 12, p 1733–1742

    Article  Google Scholar 

  10. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen Nachr, Ges. Wiss. Gött., 1912, 26, p 387–409

    Google Scholar 

  11. J.I. Langford and A.J.C. Wilson, Scherrer After Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Cryst., 1978, 11, p 102–113

    Article  Google Scholar 

  12. T. Waitz et al., Martensitic Phase Transformations in Nanocrystalline NiTi Studied by TEM, Acta Mater., 2004, 52, p 137–147

    Article  Google Scholar 

  13. N. Bärsch et al., Pure Colloidal Metal and Ceramic Nanoparticles from High-Power Picosecond Laser Ablation in Water and Acetone, Nanotechnology, 2009, 20(44), p 445603

    Article  Google Scholar 

  14. A.V. Kabashin et al., Synthesis of Colloidal Nanoparticles During Femtosecond Laser Ablation of Gold in Water, J. Appl. Phys., 2003, 94(12), p 7941

    Article  Google Scholar 

  15. H. Wang et al., Selective Pulsed Heating for the Synthesis of Semiconductor and Metal Submicrometer Spheres, Angew. Chem. Int. Ed., 2010, 49(36), p 6361–6364

    Article  Google Scholar 

  16. X. Li et al., Preparation of Silver Spheres by Selective Laser Heating in Silver-Containing Precursor Solution, Opt. Express, 2011, 19(4), p 2846–2851

    Article  Google Scholar 

  17. S. Besner et al., Ultrafast Laser Based “Green” Synthesis of Non-toxic Nanoparticles in Aqueous Solutions, Appl. Phys. Lett., 2006, 89, p 233122

    Article  Google Scholar 

  18. S. Petersen et al., In Situ Bioconjugation: Single Step Approach to Tailored Nanoparticle-Bioconjugates by Ultrashort Pulsed Laser Ablation, Adv. Funct. Mater., 2009, 19, p 1167–1172

    Article  Google Scholar 

  19. S. Barcikowski et al., Properties of Nanoparticles Generated During Femtosecond Laser Machining in Air and Water, J. Appl. Phys. A, 2007, 87, p 47–55

    Article  Google Scholar 

  20. S. Barcikowski et al., Generation of Nanoparticle Colloids by Picosecond and Femtosecond Laser Ablations in Liquid Flow, Appl. Phys. Lett., 2007, 91, p 083113

    Article  Google Scholar 

  21. G. Bajaj et al., Effect of Liquid Medium on Size and Shape of Nanoparticles Prepared by Pulsed Laser Ablation of Tin, Appl. Phys. A, 2009, 97, p 481–487

    Article  Google Scholar 

  22. D.O. Oseguera-Galindo et al., Effects of the Confining Solvent on the Size Distribution of Silver NPs by Laser Ablation, J. Nanopart. Res., 2012, 14, p 1133

    Article  Google Scholar 

  23. P. Boyer et al., Modeling Solvent Influence on Growth Mechanism of Nanoparticles (Au,Co) Synthesized by Surfactant Free Laser Processes, J. Phys. Chem. C, 2012, 116, p 8014–8019

    Article  Google Scholar 

  24. J. Frenzel et al., High Quality Vacuum Induction Melting of Small Quantities of NiTi Shape Memory Alloys in Graphite Crucibles, J. Alloy. Compd., 2004, 385, p 214–223

    Article  Google Scholar 

  25. W. Tang et al., New Modelling of the B2 Phase and its Associated Martensitic Transformation in the NiTi System, Acta Mater., 1999, 50, p 3457–3468

    Article  Google Scholar 

  26. J. Burow et al., Martensitic Transformations and Functional Stability in Ultra-Fine Grained NiTi Shape Memory Alloys, Mater. Sci. Forum, 2008, 584–586, p 852–857

    Article  Google Scholar 

  27. B. Kockar et al., Effect of Severe Ausforming Via Equal Channel Angular Extrusion on the Shape Memory Response of a NiTi Alloy, J. Nucl. Mater., 2007, 361, p 298–305

    Article  Google Scholar 

  28. B. Maaß et al., On the Influence of Crystal Defects on the Functional Stability of NiTi Based Shape Memory Alloys, ESOMAT, 2009, No. 2022, p 8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chakif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakif, M., Essaidi, A., Gurevich, E. et al. Generation of NiTi Nanoparticles by Femtosecond Laser Ablation in Liquid. J. of Materi Eng and Perform 23, 2482–2486 (2014). https://doi.org/10.1007/s11665-014-1007-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1007-7

Keywords

Navigation