Skip to main content
Log in

Growth Morphologies of Nanostructured Rutile TiO2

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The morphological and structural characteristics of nanostructure rutile TiO2 were investigated by using x-ray diffraction, scanning electron microscopy, electron diffraction, conventional and high resolution transmission electron microscopy. As a product of the precursor template of hydrogen titanate nanofibers, rutile could exhibit forms like tree, sheaf, or bundle. Both the branch and trunk of tree-like rutile have the same growth axis of [001]. The sheaf-like rutile forms while it grows along both [001] and [\( 00\bar{1} \)] directions. The bundle-like rutile grows along only one [001] direction. Tree-like morphology of nanocrystals rutile is revealed to be controlled by (101) twin structure. Twin formation is a possible mechanism to decrease the density of defects and reduce the system energy as the crystal grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Yang, J.M. Zhu, J.J. Zhu, S.S. Huang, X.H. Zhu, and G.B. Ma, Sonochemical Synthesis and Microstructure Investigation of Rod-Like Nanocrystalline Rutile Titania, Mater. Lett., 2003, 57, p 4639–4642

    Article  Google Scholar 

  2. S.F. Yang, Y.H. Liu, Y.P. Guo, J.Z. Zhao, H.F. Xu, and Z.C. Wang, Preparation of Rutile Titania Nanocrystals by Liquid Method at Room Temperature, Mater. Chem. Phys., 2002, 77, p 501–506

    Article  Google Scholar 

  3. P. Falaras, A. Hugot-Le, M.C. Bernard, and A. Xagas, Characterization by Resonance Raman Spectroscopy of Sol-Gel TiO2 Films Sensitized by the Ru(PPh3)(2)(dcbipy)Cl-2 Complex for Solar Cells Application, So. Energy mater. Sol. Cells, 2000, 64, p 167–182

    Article  Google Scholar 

  4. M. Gopal and W.J.M. Chan, Room Temperature Synthesis of Crystalline Metal Oxides, J. Mater. Sci., 1997, 32, p 6001–6008

    Article  Google Scholar 

  5. J.C. Garcia, L.V.C. Assali, and J.F. Justo, The Structural and Electronic Properties of Tin Oxide Nanowires: An Ab Initio Investigation, J. Phys. Chem., 2012, 116, p 13382–13387

    Article  Google Scholar 

  6. S.H. Yu and H. Cölfen, Bio-inspired Crystal Morphogenesis by Hydrophilic Polymers, J. Mater. Chem., 2004, 14, p 2124–2147

    Article  Google Scholar 

  7. R.A. Evarestov, D.B. Migas, and Yu.F. Zhukovskii, Symmetry and Stability of the Rutile-Based TiO2 Nanowires: Models and Comparative LCAO-Plane Wave DFT Calculations, J. Phys. Chem., 2012, 116, p 13395–13402

    Google Scholar 

  8. D.S. Seo, J.K. Lee, and H. Kim, Synthesis of TiO2 Nanocrystalline Powder by Aging at Low Temperature, J. Cryst. Growth, 2001, 233, p 298–302

    Article  Google Scholar 

  9. Y.Y. Li, J.P. Liu, and Z.J. Jia, Morphological Control and Photodegradation Behavior of Rutile TiO2 Prepared by a Low-Temperature Process, Mater. Lett., 2006, 60, p 1753–1757

    Article  Google Scholar 

  10. G.L. Li and G.H. Wang, J.M. Hong, Synthesis and Characterization of K2Ti6O13 Whiskers with Diameter on Nanometer Scale, J. Mater. Sci. Lett., 1999, 18, p 1865–1867

    Article  Google Scholar 

  11. H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song, and J.C. Zhao, Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions, J. Am. Chem. Soc., 2005, 127, p 6730–6736

    Article  Google Scholar 

  12. T. Sasaki, M. Watanabe, Y. Komatsu, and Y. Fujiki, Layered Hydrous Titanium Dioxide: Potassium Ion Exchange and Structural Characterization, Inorg. Chem., 1985, 24, p 2265–2271

    Article  Google Scholar 

  13. H. Izawa, S. Klkkawa, and M. Kolzuml, Ion Exchange and Dehydration of Layered Titanates, NaTi3O7 and K2Ti4O9, J. Phys. Chem., 1982, 86, p 5023–5026

    Article  Google Scholar 

  14. R. Marchand, L. Brohan, L. Mbedi, and M. Tournoux, Hydrolysis-Pyrolysis Process Applied to K2Ti4O9, Rev. Chim. Miner., 1984, 21, p 476–486

    Google Scholar 

  15. A.S. Barnard, P. Zapol, and L.A. Curtiss, Modeling the Morphology and Phase Stability of TiO2 Nanocrystals in Water, J. Chem. Theory Comput., 2005, 1, p 107–116

    Article  Google Scholar 

  16. P.M. Oliver, G.W. Watson, E.T. Kelsey, and S.C. Parker, Atomistic simulation of the surface structure of the TiO2 polymorphs rutile and anatase, J. Mater. Chem., 1997, 7, p 563–568

    Article  Google Scholar 

  17. C.K. Xu, Y.J. Zhan, K.Q. Hong, and G.H. Wang, Growth and Mechanism of Titania Nanowires, Solid State Commun., 2003, 126, p 545–549

    Article  Google Scholar 

  18. M.H. Tsai, S.Y. Chen, and P. Shen, Imperfect Oriented Attachment: Accretion and Defect Generation of Nanosize Rutile Condensates, Nano. Lett., 2004, 4, p 1197–1201

    Article  Google Scholar 

  19. D.W. Meng, X.L. Wu, X. Meng, Y.J. Han, and D.X. Li, Domain Structures in Rutile in Ultrahigh-Pressure Metamorphic Rocks from Dabie Mountains, China, Micron, 2004, 35, p 441–445

    Article  Google Scholar 

  20. G. Wang and G. Li, Titania from Nanoclusters to Nanowires and Nanoforks, Eur. Phys. J. D, 2003, 24, p 355–360

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the financial supports by the Guangdong Science and Technology Project under Grant No. 2012B010200047, the Jiangmen Science and Technology Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Sheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YS., Liu, HW. Growth Morphologies of Nanostructured Rutile TiO2 . J. of Materi Eng and Perform 23, 1240–1246 (2014). https://doi.org/10.1007/s11665-014-0895-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0895-x

Keywords

Navigation