Skip to main content
Log in

A Numerical/Experimental Study of Nitinol Actuator Springs

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study deals with the numerical modeling, simulation and experimental analysis of shape-memory alloy (SMA) helicoidal springs. An experimental campaign is conducted on both SMA straight wires and helicoidal springs that experienced the same annealing process. Then, we use such experimental results to investigate three phenomenological constitutive models able to represent SMA macroscopic behavior. In particular, after the identification of all the material parameters from experimental results on SMA wires, we inspect the thermo-mechanical behavior of SMA helicoidal springs by comparing numerical predictions to experimental data. Finally, we discuss models capabilities and some aspects characterizing SMA material behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.A. Khidir, N.A. Mohamed, M.J.M. Nor, and M.M. Mustafa, A New Method for Actuating Parallel Manipulators, Sens. Actuators A, 2008, 147, p 593–599

    Article  Google Scholar 

  2. V. Bundhoo, E. Haslam, B. Birch, and E.J. Park, A Shape Memory Alloy-Based Tendon-Driven Actuation System for Biomimetic Artificial Fingers, Part I: Design and Evaluation, Robotica, 2009, 27, p 131–146

    Article  Google Scholar 

  3. G. Dumont and C. Kühl, Finite Element Simulation for Design Optimization of Shape Memory Alloy Spring Actuators, Eng. Comput., 2005, 22, p 835–848

    Article  Google Scholar 

  4. R.A.A. de Aguiar, W. de Castro Leo Neto, M. Savi, and P. Calas Lopes Pacheco, Shape Memory Alloy Helical Springs Performance: Modeling and Experimental Analysis, Mater. Sci. Forum, 2013, 758, p 147–156

    Article  Google Scholar 

  5. R.A.A. de Aguiar, M. Savi, and P.M.C.L. Pacheco, Experimental and Numerical Investigations of Shape Memory Alloy Helical Springs, Smart Mater. Struct., 2010, 19, p 1–9

    Article  Google Scholar 

  6. Y. Toi, J.B. Lee, and M. Taya, Finite Element Analysis of Superelastic, Large Deformation Behavior of Shape Memory Alloy Helical Springs, Comput. Struct., 2004, 82, p 1685–1693

    Article  Google Scholar 

  7. M.A. Savi and A.M.B. Braga, Chaotic Vibrations of an Oscillator with Shape Memory, J. Braz. Soc. Mech. Sci. Eng., 1993, 15, p 1–20

    Google Scholar 

  8. A. Saleeb, B. Dhakal, M. Hosseini, and S. Padula, II, Large Scale Simulation of NiTi Helical Spring Actuators Under Repeated Thermomechanical Cycles, Smart Mater. Struct., 2013, 22, p 1–20

    Google Scholar 

  9. G. Attanasi, F. Auricchio, and M. Urbano, Theoretical and Experimental Investigation on SMA Superelastic Springs, J. Mater. Eng. Perform., 2011, 20(4–5), p 706–711

    Article  Google Scholar 

  10. Y. Toi, J.B. Lee, and M. Taya, Finite Element Analysis of Superelastic Behavior of Shape Memory Alloy Devices (Part 1: Small Deformation Analysis of Tensile and Bending Behaviors), Trans. Jpn. Soc. Mech. Eng. A, 2002, 68(676), p 1688–1694 (in Japanese)

    Article  Google Scholar 

  11. Y. Toi, J.B. Lee, and M. Taya, Finite Element Analysis of Superelastic Behavior of shape Memory Alloy Devices (Part 2: Finite Deformation Analysis of Beams and Helical Springs), Trans. Jpn. Soc. Mech. Eng. A, 2002, 68(676), p 1695–1701 (in Japanese)

    Article  Google Scholar 

  12. A.C. Souza, E.N. Mamiya, and N. Zouain, Three-Dimensional Model for Solids Undergoing Stress-Induced Phase Transformations, Eur. J. Mech. A: Solids, 1998, 17, p 789–806

    Article  Google Scholar 

  13. F. Auricchio and L. Petrini, A Three-Dimensional Model Describing Stress-Temperature Induced Solid Phase Transformations: Solution Algorithm and Boundary Value Problems, Int. J. Numer. Meth. Eng., 2004, 6, p 807–836

    Article  Google Scholar 

  14. F. Auricchio, A. Coda, A. Reali, and M. Urbano, SMA Numerical Modeling Versus Experimental Results: Parameter Identification and Model Prediction Capabilities, J. Mater. Eng. Perform., 2009, 18, p 649–654

    Article  Google Scholar 

  15. F. Auricchio, S. Morganti, A. Reali, and M. Urbano, Theoretical and Experimental Study of the Shape Memory Effect of Beam in Bending Conditions, J. Mater. Eng. Perform., 2011, 20, p 712–718

    Article  Google Scholar 

  16. F. Auricchio and E. Bonetti, A New Flexible 3D Macroscopic Model for Shape Memory Alloys, Discret. Contin. Dyn. Syst. Ser. S, 2013, 6, p 277–291

    Google Scholar 

  17. F. Auricchio, E. Bonetti, G. Scalet, F. Ubertini. Refined shape memory alloys model taking into account martensite reorientation. CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), J. Eberhardsteiner, H.J. Bhm, F.G. Rammerstorfer (Eds), September 10–14, 2012, Wien, Austria, Vienna University of Technology, Austria, 2012, 3349–3362.

  18. AceFEM/AceGen Manual, 2007. http://www.fgg.unilj.si/Symech/.

  19. M. Urbano, Al. SMAq. A Novel Instrument for the Characterization of SMA Wires. Proceedings of the International Conference on Shape Memory and Superelastic Technologies, May 7-11, Pacific Groove, California, USA, 2006, p 177–184

  20. D. Lagoudas, Ed., Shape Memory Alloys. Modeling and Engineering Applications, Springer, New York, 2008

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Luca Fumagalli and coworkers for samples preparation, and to Alberto Coda and Andrea Cadelli for the experimental characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Urbano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auricchio, F., Scalet, G. & Urbano, M. A Numerical/Experimental Study of Nitinol Actuator Springs. J. of Materi Eng and Perform 23, 2420–2428 (2014). https://doi.org/10.1007/s11665-014-0883-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-0883-1

Keywords

Navigation