Skip to main content
Log in

Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range −30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10−3 to 1 s−1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type \( \dot{\upvarepsilon } = A\sinh (\upalpha /\upsigma )^{n} \exp ( - Q/RT) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Hosford, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2005

    Book  Google Scholar 

  2. S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Constitutive Flow Behaviour of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modelling to Understand, Evaluate and Predict, Model. Simul. Mater. Sci. Eng., 2006, 14, p 1053–1070

    Article  CAS  Google Scholar 

  3. H.-Y. Li, D.-D. Wei, Y.-H. Li, and X.-F. Wang, Application of Artificial Neural Network and Constitutive Equations to Describe the Hot Compressive Behavior of 28CrMnMoV Steel, Mater. Des., 2012, 35, p 557–562

    Article  CAS  Google Scholar 

  4. H. Sheikh and S. Serajzadeh, Estimation of Flow Stress Behavior of AA5083 Using Artificial Neural Networks with Regard to Dynamic Strain Ageing Effect, J. Mater. Process. Technol., 2008, 196, p 115–119

    Article  CAS  Google Scholar 

  5. R. Kapoor, D. Pal, and J.K. Chakravartty, Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu, J. Mater. Process. Technol., 2005, 169, p 199–205

    Article  CAS  Google Scholar 

  6. D.H. Sastry, Y.V.R.K. Prasad, and K.I. Vasu, On the Stacking Fault Energies of some Close-Packed Hexagonal Metals, Scripta Metal., 1969, 3, p 927–929

    Article  CAS  Google Scholar 

  7. T. Sakai and J.J. Jonas, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  CAS  Google Scholar 

  8. A. Sarkar, J.K. Chakravartty, and I. Samajdar, The Avrami Kinetics of Dynamic Recrystallization in Cadmium, Metall. Mater. Trans. A, 2010, 41, p 2466–2470

    Article  Google Scholar 

  9. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138

    Article  CAS  Google Scholar 

  10. C. Zener and H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32

    Article  Google Scholar 

  11. H.K.D.H. Bhadeshia, Neural Networks in Materials Science, ISIJ Int., 1999, 39(1999), p 966–979

    Article  CAS  Google Scholar 

  12. Y.M. Zhang, S. Yang, and J.R.G. Evans, Revisiting Hume-Rothery’s Rules with Artificial Neural Networks, Acta Mater., 2008, 56, p 1094–1105

    Article  CAS  Google Scholar 

  13. Z. Guo, S. Malinov, and W. Sha, Modelling Beta Transus Temperature of Titanium Alloys Using Artificial Neural Network, Comput. Mater. Sci., 2005, 32, p 1–12

    Article  CAS  Google Scholar 

  14. K. Hornik, Some New Results on Neural Network Approximation, Neural Netw., 1993, 6, p 1069–1072

    Article  Google Scholar 

  15. W. Sha, Comment on “Flow Forecasting for a Hawaii Stream Using Rating Curves and Neural Networks”, J. Hydrol., 2007, 340, p 119–121

    Article  Google Scholar 

  16. S. Srinivasulu and A. Jain, A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models, Appl. Soft. Comput., 2006, 6, p 295–306

    Article  Google Scholar 

  17. J.D. Olden and D.A. Jackson, Illuminating the “black box”: A Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks, Ecol. Model., 2002, 154, p 135–150

    Article  Google Scholar 

  18. M. Gevrey, I. Dimopoulos, and S. Lek, Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models, Ecol. Model., 2003, 160, p 249–264

    Article  Google Scholar 

  19. G.D. Garson, Interpreting Neural-Network Connection Weights, Artif. Intell. Expert, 1991, 6, p 47–51

    Google Scholar 

  20. A.T.C. Goh, Back-Propagation Neural Networks for Modeling Complex Systems, Artif. Intell. Eng., 1995, 9, p 143–151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Chakravartty, J.K. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach. J. of Materi Eng and Perform 22, 2982–2989 (2013). https://doi.org/10.1007/s11665-013-0597-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0597-9

Keywords

Navigation