Skip to main content
Log in

Surface Modification of Commercial Low-Carbon Steel using Glow Discharge Nitrogen Plasma and its Characterization

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Plasma nitriding under glow discharge nitrogen plasma has been undertaken on laboratory scale for surface engineering of commercial low carbon steels. The treatment has been shown to confer exceptional improvement in surface properties, viz., hardness and corrosion resistance. The results have been discussed in light of microstructural changes occurring on steel surface and its interior as a result of Fickian nitrogen diffusion and correlated with influences of nitriding-temperature and alloying elements (Mn, Nb, and Si) in steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Kunze, Nitrogen and Carbon in Iron and Steel: Thermodynamics, Akademie Verlag, Berlin, 1990

    Google Scholar 

  2. J. Kunze, Thermodynamic Calculation of Phase Diagrams in the Iron-Nitrogen System, Steel Res., 1986, 57(8), p 361–367

    CAS  Google Scholar 

  3. J. Agren, A Thermodynamic Analysis of the Fe-C and Fe-N Phase Diagrams, Metall. Trans. A, 1979, 10(12), p 1847–1852

    Article  Google Scholar 

  4. M. Hillert and M. Jarl, A Thermodynamic Analysis of the Iron-Nitrogen System, Metall. Trans. A, 1975, 6(3), p 553–559

    Article  Google Scholar 

  5. F.B. Pickering, Some Aspects of the Relationships Between the Mechanical Properties of Steels and Their Microstructures, TISCO, 1980, 27, p 105–132

    CAS  Google Scholar 

  6. T. Bell and W.S. Owen, Martensite in Iron-Nitrogen Alloys, J. Iron Steel Inst., 1967, 205(4), p 428–434

    CAS  Google Scholar 

  7. V.G. Gavriljuk and H. Berns, High nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer Verlag, Berlin, 1999

    Book  Google Scholar 

  8. D.H. Jack and K.H. Jack, Carbides and Nitrides in Steel, Mater. Sci. Eng., 1973, 11(1), p 1–27

    Article  CAS  Google Scholar 

  9. H. Braune, Influence De L’Azote Sur Le Fer et L’Acier, Rev. Metall., 1905, 2, p 498

    Google Scholar 

  10. A. Fry, Stickstoff in Eisen, Stahl und Sonderstahl, Kruppsche Monatshefte, 1923, 4, p 138

    Google Scholar 

  11. B.N. Bose and M.F. Hawkes, Kinetics of the Eutectoid Transformation in Alloys of Iron and Nitrogen, Trans. AIME, 1950, 188, p 307

    CAS  Google Scholar 

  12. J. Williams et al., Proceedings of International Symposium by the Institute of Metals, University of Manchester, July 3-5, 1968, Monograph & Report Series No. 33, p 49–53

  13. T. Bell and B.C. Farnell, Proceedings of the International Symposium on Metallurgical Chemistry—Applications in Ferrous Metallurgy, Sheffield, 1971

  14. X.C. Xiong, A. Redjaïmia, and M. Gouné, Pearlite in Hypoeutectoid Iron-Nitrogen Binary Alloys, J. Mater. Sci., 2009, 44(2), p 632–638

    Article  CAS  Google Scholar 

  15. H. Baba, T. Kodama, and Y. Katada, Role of Nitrogen on the Corrosion Behavior of Austenitic Stainless Steels, Corros. Sci., 2002, 44(10), p 2393–2407

    Article  CAS  Google Scholar 

  16. M. Sagara, Y. Katada, and T. Kodama, Localized Corrosion Behaviour of High Nitrogen-Bearing Austenitic Stainless Steels in Seawater Environment, ISIJ Int., 2003, 43(5), p 714–719

    Article  CAS  Google Scholar 

  17. J.W. Park, V. Shankar Rao, and H.S. Kwon, Effects of Nitrogen on the Repassivation Behavior of Type 304l Stainless Steel in Chloride Solution, Corrosion, 2004, 60(12), p 1099–1103

    Article  CAS  Google Scholar 

  18. L. Vehovar, A. Vehovar, M. Metikos-Hukovic, and M. Tandler, Investigations into the Stress Corrosion Cracking of Stainless Steel Alloyed with Nitrogen, Mater. Corros., 2002, 53(5), p 316–327

    Article  CAS  Google Scholar 

  19. P.R. Levey and A. van Bennekom, A Mechanistic Study of the Effects of Nitrogen on the Corrosion Properties of Stainless Steels, Corrosion, 1995, 51(12), p 911–921

    Article  CAS  Google Scholar 

  20. E. Lehrer, Über Das Eisen-Wasserstoff-Ammoniak-Gleichgewicht, Zeitschrift für Elektrochemie, 1930, 36, p 383–392

    CAS  Google Scholar 

  21. D. Pye, Practical Nitriding and Ferritic Nitrocarburizing, ASM International, 2003, p 23-26

  22. H.J. Grabke, The Role of Nitrogen in the Corrosion of Iron and Steels, ISIJ Int., 1996, 36(7), p 777–786

    Article  CAS  Google Scholar 

  23. U.K. Mudali and B. Raj, High Nitrogen Steels and Stainless Steels, ASM International, 2004, p 133-181

  24. R.W.K. Honeycombe, Steels—Microstructure and Properties, Edward Arnold, London, 1981, p 1

    Google Scholar 

  25. M. Kikuchi, M. Kajihara, K. Frisk, Solubility of nitrogen in austenitic stainless steels, High nitrogen steels HNS 88, Proc. Int. Conf, J. Foct, A. Hendry, Eds., The Institute of Metals, London, 1989, p 63

  26. H. Berns, Manufacture and Application of High Nitrogen Steels, ISIJ Int., 1996, 36(7), p 909–914

    Article  CAS  Google Scholar 

  27. K. Osazawa and N. Okata, Passivity and its breakdown on iron and iron-based alloys, USA-Japan Seminar (Honolulu), NACE, Houston, TX, 1976, p 135

  28. U.K. Mudali, H.S. Khatak, B. Raj, and M. Uhlemann, Surface Alloying of Nitrogen to Improve Corrosion Resistance of Steels and Stainless Steels, Mater. Manuf. Process., 2004, 19(1), p 61–73

    Article  Google Scholar 

  29. C. Colombo, M. Guagliano, and L. Vergani, Fatigue Crack Growth Behaviour of Nitrided Low and Shot-Peened Specimens, SID, 2005, 1(4), p 253–265

    Google Scholar 

  30. K. Tokaji and S. Takahashi, Corrosion Fatigue Behaviour and Fracture Mechanisms in Nitrided Low Alloy Steel, Fatigue Fract. Eng. Mater. Struct., 2003, 26(3), p 215–221

    Article  CAS  Google Scholar 

  31. K. Tokaji and S. Takahashi, Fatigue Behaviour of Nitrided Low Alloy Steel in 3% NaCl Solution, Surf. Treat. VI, Proc. 6th Int. Conf. Surf. Treat., Crete, Greece, 2003, p 195-204

  32. P.L. De Anna, G. Cerisola, P.L. Bonora, S.L. Russo, P. Mazzoldi, I. Scotoni, and C. Tosello, Corrosion Fatigue Behaviour of Nitrogen-Implanted Steel in Water, Mater. Corros., 2004, 31(10), p 783–789

    Google Scholar 

  33. O.I. Balytskyi and O.O. Krokhmalnyi, Pitting Corrosion of 12Kh18AG18Sh Steel in Chloride Solutions, Mater. Sci., 2006, 35(3), p 389–394

    Article  Google Scholar 

  34. F.M. Khoshnaw, A.I. Kheder, and F.S.M. Ali, Corrosion fatigue behavior of nitrided low alloy steel compared to austenitic stainless steel, Proc. Stainless Steel World Conf., Holland, 2005, p 462-466

  35. F.M. Khoshnaw, A.I. Kheder, and F.S.M. Ali, Corrosion Behaviour of Nitrided Low Alloy Steel in Chloride Solution, Anti Corros. Methods Mater., 2007, 54(3), p 173–179

    Article  CAS  Google Scholar 

  36. R.D. Pehlke and J.F. Elliott, Solubility of Nitrogen in Liquid Iron Alloys—Thermodynamics, Trans. AIME, 1960, 218, p 1088–1101

    CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to gratefully acknowledge the support and encouragement of the senior management of RDCIS, SAIL for permitting to publish this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, S., Saravanan, P., Joseph, A. et al. Surface Modification of Commercial Low-Carbon Steel using Glow Discharge Nitrogen Plasma and its Characterization. J. of Materi Eng and Perform 22, 2610–2622 (2013). https://doi.org/10.1007/s11665-013-0533-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0533-z

Keywords

Navigation