Skip to main content
Log in

The Effect of Temperature Condition on Material Deformation and Die Wear

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The characteristics of temperature change on die and billet are very complex during the deformation process because of the interaction between them and some unstable external factors. In this paper, the numerical simulation model for the crank shaft die forging was established by means of the rigid-plastic FEM method. The model was validated by optical non-contact 3D measurement—ATOS. Based on available research results, this paper explored the effect of temperature conditions on material deformation and die wear. Three parameters, press velocity and initial temperature of billet and die, were chosen to illustrate the effects. From the experimental results, the effect of process parameters on deformation ability of the material is simple, while the effect on die wear is relatively complicated. The press velocity plays an important role on die wear when the initial temperature of the billet has larger influence on material deformation. A conclusion can be drawn that when the initial temperature of the billet is 1100 °C, the initial temperature of the die is 250 °C, and the velocity is kept in the range of 200-300 mm/s, the optimum solution for deformation ability of the material and die wear can be obtained. It is possible for the conclusion to be extended further for the control of temperature condition to optimize die life and material deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. O. Brucelle and G. Bernhart, Methodology for Service Life Increase of Hot Forging Tools, J. Mater. Process. Technol., 1999, 87(1-3), p 237–246

    Article  Google Scholar 

  2. T. Iwama and Y. Morimoto, Die Life and Lubrication in Warm Forging, J. Mater. Process. Technol., 1997, 71(1), p 43–48

    Article  Google Scholar 

  3. R.S, Lee, and J.L. Jou, Application of Numerical Simulation for Wear Analysis of Warm Forging Die, J. Mater. Process. Technol., 2003, 140(1-3), p 43–48

  4. L.V. Cheng, L. Zhang, Z. Mua, Q. Tai, and Q. Zheng, 3D FEM Simulation of the Multi-stage Forging Process of a Gas Turbine Compressor Blade, J. Mater. Process. Technol., 2008, 198(1-3), p 463–470

    Article  Google Scholar 

  5. U.S. Dixit, S.N. Joshi, and J.P. Davim, Incorporation of Material Behavior in Modeling of Metal Forming and Machining Processes: A Review, Mater. Des., 2011, 32(7), p 3655–3670

    Article  CAS  Google Scholar 

  6. P. Hartley and I. Pillinger, Numerical Simulation of the Forging Process, Comput. Methods Appl. Mech., 2006, 195(48-49), p 6676–6690

    Article  Google Scholar 

  7. D.H. Kim et al., Die Life Considering the Deviation of the Preheating Billet Temperature in Hot Forging Process, Finite Elements Anal. Des., 2005, 41(13), p 1255–1256

    Article  Google Scholar 

  8. A. Minami, Y. Marumo, H. Saiki, L. Ruan, and O. Shizuma, Effects of Simulation Conditions on Evaluation of Tool Temperature in Hot Extrusion-Forging, J. Mater. Process. Technol., 2006, 177(1-3), p 251–255

    Article  CAS  Google Scholar 

  9. W. Huachang, W. Guan, X. Han, and W. Hongfu, Hot-forging Die Cavity Surface Layer Temperature Gradient Distribution and Determinant, J. Wuhan. Univ. Technol., 2011, 26(4), p 801–806

    Article  Google Scholar 

  10. C. Cosenz, L. Fratini, A. Pasta, and F. Micari, Damage and Fracture Study of Cold Extrusion Dies, Eng. Fract. Mech., 2004, 71(7-8), p 1021–1033

    Article  Google Scholar 

  11. M.W. Fu, J. Lu, and W.L. Chan, Die Fatigue Life Improvement Through the Rational Design of Metal-Forming System, J. Mater. Process. Technol., 2009, 209(2), p 1074–1084

    Article  CAS  Google Scholar 

  12. P. Skov-Hansen, N. Bay, J. Grùnbñk, and P. Brùndsted, Fatigue in Cold-Forging Dies: Tool Life Analysis, J. Mater. Process. Technol., 1999, 95(1-3), p 40–48

    Article  Google Scholar 

  13. S.A. McKinley and A. Fatemi, Surface Finish Effect on Fatigue Behavior of Forged Steel, Int. J. Fatigue, 2012, 36(1), p 130–145

    Article  Google Scholar 

  14. H.M.T. Khaleed and Z. Samad, Work-Piece Optimization and Thermal Analysis for Flash-Less Cold Forging of AUV Propeller Hubs—FEM Simulation and Experiment, J. Manuf. Process., 2011, 13(1), p 41–49

    Article  Google Scholar 

  15. J.H. Kang, I.W. Park et al., A Study on a Die Wear Model Considering Thermal Softening: (I) Application of the Suggested Wear Model, J. Mater. Process. Technol., 1999, 96(1-3), p 183–188

    Article  Google Scholar 

  16. D. Heinemeyer, Untersuchungen zur Frage der Haltbarkeit von Schmiedegesenken, Dr.-Ing. Thesis, Hannover, 1976

  17. K. Lange, L. Cser, M. Geiger, and J.A.G. Kals, Tool Life and Tool Quality in Bulk Metal Forming, CIRP Ann. Manuf. Technol., 1992, 41(2), p 667–675

    Article  Google Scholar 

  18. T. Hisakado, Effects of Surface Roughness and Surface Films on Contact Resistance, Wear, 1977, 44(2), p 345–359

    Article  CAS  Google Scholar 

  19. P.H. Hansen and N. Bay, A Flexible Computer based System for Prediction of Wear Distribution in Forming Tools, Adv. Technol. Plast., 1990, 1, p 19–26

    Article  Google Scholar 

  20. E. Summerville, K. Venkatesan, and C. Subramanian, Wear Processes in Hot Forging Press Tools, Mater. Des., 1995, 16(5), p 289–294

    Article  CAS  Google Scholar 

  21. P.K. Saha, Thermodynamics and Tribology in Aluminum Extrusion, Wear, 1998, 218(2), p 179–190

    Article  CAS  Google Scholar 

  22. Z. Gronostajski and M. Hawryluk, The Main Aspects of Precision Forging, Arch. Civ. Mecheng., 2008, 8(22), p 39–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Jin-jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, J., Jie, Z., Jin-jin, J. et al. The Effect of Temperature Condition on Material Deformation and Die Wear. J. of Materi Eng and Perform 22, 2019–2028 (2013). https://doi.org/10.1007/s11665-013-0489-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0489-z

Keywords

Navigation