Skip to main content
Log in

The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, artificial neural network (ANN) was used to model the hot deformation behavior of 7075 aluminum alloy during compression test, in the strain rate range of 0.0003-1 s−1 and temperature range of 200-450 °C. The inputs of the model were temperature, strain rate, and strain, while the output of the model was the flow stress. The feed-forward back-propagation network with two hidden layers was built and successfully trained at different deformation domains by Levenberg-Marquardt training algorithm. Comparative analysis of the results obtained from the hyperbolic sine, the power law constitutive equations, and the ANN shows that the newly developed ANN model has a better performance in predicting the hot deformation behavior of 7075 aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Tiryakioglu, J.T. Staley, Physical Metallurgy and the Effect of Alloying Additions in Aluminum Alloys, Handbook of Aluminum. Marcel Dekker Inc, New York, 2003

  2. L. Jin-feng, P. Zhuo-wei et al., Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminum Alloy with Various Aging Treatments, Trans. Nonferrous Met. Soc. China, 2008, 18, p 755–762

    Article  Google Scholar 

  3. I.J. Polmear, Light Alloys from Traditional Alloys to Nanocrystals, 4th ed., Butterworth-Heinemann-Elsevier, Oxford, 2006

    Google Scholar 

  4. M.A. Choudhry and M. Ashraf, Effect of Heat treatment and Stress Relaxation in 7075 Aluminum Alloy, Alloys Compd., 2007, 437, p 113–116

    Article  CAS  Google Scholar 

  5. S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals Plastic instability and flow localization, American Society for Metals, Materials Park, OH, 1984

    Google Scholar 

  6. N. Ravichandran and Y.V.R.K. Prasad, Dynamic Recrystallization During Hot Deformation of Aluminum: A Study Using Processing Maps, Metall. Trans., 1991, 22A, p 2339–2348

    CAS  Google Scholar 

  7. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier et al., Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN718 Superalloy, Mater. Sci. Eng., 2000, A293, p 198–207

    CAS  Google Scholar 

  8. C.M. Sellars and W.J.Mc.G. Tegart, Hot Workability, Int. Metall., 1972, 17, p 1–24

    Article  CAS  Google Scholar 

  9. A. Jenab and A. Karimi Taheri, Evaluation of Low Strain Rate Constitutive Equation of 7075 Aluminum Alloy at Hight Temperature, Mater. Sci. Technol., 2011, 27, p 1067–1072

    Article  CAS  Google Scholar 

  10. M. Zhou and M.P. Clode, Constitutive Equation for Modeling Flow Softening Due to Dynamic Recovery and Heat Generation During Plastic Deformation, Mech. Mater., 1998, 27, p 63–76

    Article  Google Scholar 

  11. A. Gholamzadeh and A. Karimi Taheri, The Prediction of Hot Flow Behavior of Al-6%Mg Alloy, Mech. Res. Commun., 2009, 36, p 252–259

    Article  Google Scholar 

  12. R. Kapoor, D. Pal, and J.K. Chakravartty, Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5Nb-0.5Cu, J. Mater. Process. Technol., 2005, 169, p 199–205

    Article  CAS  Google Scholar 

  13. S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Constitutive Flow Behaviour of Austenitic Stainless Steels Under Hot Deformation: Artificial Neural Network Modelling to Understand, Evaluate and Predict, Model. Simul. Mater. Sci. Eng., 2006, 14, p 1053–1070

    Article  CAS  Google Scholar 

  14. Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758

    Article  CAS  Google Scholar 

  15. A. Mahamood Hassan, A. Alrashdan, M.T. Hayajneh, and A. Turki Mayyas, Prediction of Density, Porosity and Hardness in Aluminum-Copper-Based Composite Materials Using Artificial Neural Network, J. Mater. Process. Technol., 2009, 209, p 894–899

    Article  Google Scholar 

  16. I.S. Jalham, Modeling Capability of the Artificial Neural Network (ANN) to Predict the Effect of the Hot Deformation Parameters on the Strength of Al-Base Metal Matrix Composites, Compos. Sci. Technol., 2003, 63, p 63–67

    Article  CAS  Google Scholar 

  17. L.X. Kong, P.D. Hodgson, and D.C. Collinson, Extrapolative Prediction of the Hot Strength of Austenitic Steels with a Combined Constitutive and ANN Model, J. Mater. Process. Technol., 2000, 102, p 84–89

    Article  Google Scholar 

  18. J. Liu, H. Chang, T.Y. Hsu, Xu. Zuyao, and Xueyu. Ruan, Prediction of the Stress of High-Speed Steel During Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205

    Article  Google Scholar 

  19. H.R. Hafizpour, M. Sanjari, and A. Simchi, Analysis of the Effect of Reinforcement Particles on the Compressibility of Al-SiC Composite Powders Using a Neural Network Model, Mater. Des., 2009, 30, p 1518–1523

    Article  CAS  Google Scholar 

  20. W.S. Lee, W.C. Sue et al., The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, Mater. Process. Technol., 2000, 100, p 116–122

    Article  Google Scholar 

  21. J. Sheikh-Ahmad and J. Twomey, ANN Constitutive Model for High Strain-Rate Deformation of Al 7075-T6, J. Mater. Process. Technol., 2007, 186, p 339–345

    Article  CAS  Google Scholar 

  22. H.E. Hu, L. Zhen, L. Yang et al., Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng., 2008, A 488, p 64–71

    Google Scholar 

  23. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure, Mater. Sci. Eng., 2002, A 325, p 112–125

    Google Scholar 

  24. S.L. Semiatin, V. Seetharaman, and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys—An Overview, Mater. Sci. Eng., 1998, A243, p 1–24

    CAS  Google Scholar 

  25. J. May, H.W. Höppel, and M. Göken, Strain Rate Sensitivity of Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation, Scripta Mater., 2005, 53, p 189–194

    Article  CAS  Google Scholar 

  26. R.C. Picua, G. Vincze, F. Ozturk, J.J. Gracio, F. Barlat, and A.M. Maniatty, Strain Rate Sensitivity of the Commercial Aluminum Alloy AA5182-O, Mater. Sci. Eng., A, 2005, 390, p 334–343

    Article  Google Scholar 

  27. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004

    Google Scholar 

  28. K.-L. Du and M.N.S. Swamy, Neural Networks in a Softcomputing Framework, Springer-Verlag London Limited, Berlin, 2006

    Google Scholar 

  29. P.M. Dixit and U.S. Dixit, Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods, Brian Derby, Springer-Verlag London Limited, Berlin, 2008

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the research board and the Department of Materials Science and Engineering of Sharif University of Technology, Tehran, Iran, for the provision of research facilities used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jenab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenab, A., Karimi Taheri, A. & Jenab, K. The Use of ANN to Predict the Hot Deformation Behavior of AA7075 at Low Strain Rates. J. of Materi Eng and Perform 22, 903–910 (2013). https://doi.org/10.1007/s11665-012-0332-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0332-y

Keywords

Navigation