Skip to main content
Log in

Effects of Severe Cold Rolling on Exfoliation Corrosion Behavior of Al-Zn-Mg-Cu-Cr Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The exfoliation corrosion (EXCO) behavior of Al-Zn-Mg-Cu-Cr alloy after severe cold rolling was investigated by optical microscope, transmission electron microscope, and electrochemical technique. The results show that the EXCO resistance decreased with increasing cold rolling reduction because of the grain boundaries which were decorated with the continuously distributed particles. After the solution treatment, the samples with different reductions retained the fibrous grains, and the elongated grains accelerated the growth of the corrosion cracks according to crack propagation analysis. Furthermore, the increase of deformation enhanced the degree of recrystallization, while the number of corrosion cells increased greatly when in the electrolyte, which tended to reduce the resistance to EXCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.J. Robinson and N.C. Jackson, The Influence of Grain Structure and Intergranular Corrosion Rate on Exfoliation and Stress Corrosion Cracking of High Strength Al-Cu-Mg Alloy, Corros. Sci., 1999, 41(5), p 1013–1028

    Article  CAS  Google Scholar 

  2. J. Wloka, T. Hack, and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behavior of High Strength Al-Zn-Mg-Cu Alloys, Corros. Sci., 2007, 49, p 1437–1449

    Article  CAS  Google Scholar 

  3. J.P. Chubb and T.A. Morad, The Effect of Exfoliation Corrosion on the Fracture and Fatigue Behavior of 7178-T6 Aluminum, Int. J. Fatigue, 1995, 17, p 49–54

    Article  CAS  Google Scholar 

  4. S. Maitra and G.C. English, Mechanism of Localized Corrosion of 7050 Alloy Plate, Metall. Trans., 1981, 12A, p 535–541

    Google Scholar 

  5. J.C. Lin, H.L. Liao, and W.D. Jehng, Effect of Heat Treatments on the Tensile Strength and SCC-Resistance of AA7050 in an Alkaline Saline Solution, Corros. Sci., 2006, 48(10), p 3139–3456

    Article  CAS  Google Scholar 

  6. F. Hamidreza, H. Babak, and Y. Mousa, The Effect of the Surface Treating and High-Temperature Aging on the Strength and SCC Susceptibility of 7075 Aluminum Alloy, J. Mater. Eng. Perform., 2010, 19(6), p 852–859

    Article  Google Scholar 

  7. J.F. Li, N. Birbilis, and C.X. Li, Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminum AA7150, Mater. Charact., 2009, 60, p 1334–1341

    Article  CAS  Google Scholar 

  8. H.C. Fang, K.H. Chen, and X. Chen, Effect of Cr, Yb and Zr Additions on Localized Corrosion of Al-Zn-Mg-Cu Alloy, Corros. Sci., 2009, 51, p 2872–2877

    Article  CAS  Google Scholar 

  9. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 2004, p 11–15

    Book  Google Scholar 

  10. ASTM Standard G34-90, Standard Test Method for Ecorrosion Susceptibility in 2XXX and 7XXX Series Al Alloys, 1990

  11. D. Wang and Z.Y. Ma, Effect of Pre-Strain on Microstructure and Stress Corrosion Cracking of Over-Aged 7050 Aluminum Alloy, J. Alloys Compd., 2009, 469(1–2), p 445–450

    Article  CAS  Google Scholar 

  12. K. Stiller, P.J. Warren, and V. Hansen, Investigation of Precipitation in an Al-Zn-Mg Alloy After Two-Step Ageing Treatment an 100 and 150 °C, Mater. Sci. Eng. A, 1999, 270(1–2), p 55–63

    Google Scholar 

  13. G. Waterloo and V. Hansen, Effect of Pre-Deformation and Preaging at Room Temperature in Al-Zn-Mg-(Cu, Zr) Alloys, Mater. Sci. Eng. A, 2001, 303(1–2), p 226–233

    Google Scholar 

  14. R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, and K.S. Shin, Grain Boundary Segregation and Hydrogen-induced Fracture in 7050 Aluminum Alloy, Acta Mater., 1996, 44(8), p 3241–3248

    Article  CAS  Google Scholar 

  15. R.G. Song, W. Dietzel, and B.J. Zhang, Stress Corrosion Cracking and Hydrogen Embrittlement of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2004, 52(16), p 4727–4743

    Article  CAS  Google Scholar 

  16. X.Y. Zhao and G.S. Frankel, Quantitative Study of Exfoliation Corrosion: Exfoliation of Slices in Humidity Technique, Corros. Sci., 2007, 49(2), p 920–938

    Article  CAS  Google Scholar 

  17. M.J. Robinson and N.C. Jackson, Exfoliation Corrosion of High Strength Al-Cu-Mg Alloys: Effect of Grain Structure, Br. Corros. J., 1999, 34(1), p 45–49

    CAS  Google Scholar 

  18. M.J. Robinson and N.C. Jackson, The Influence of Grain Structure and Intergranular Corrosion Rate on Exfoliation and Stress Corrosion Cracking of High Strength Al-Cu-Mg Alloys, Corros. Sci., 1999, 41, p 1013–1028

    Article  CAS  Google Scholar 

  19. K.H. Chen and H.C. Fang, Effect of Yb, Cr and Zr Additions on Recrystallization and Corrosion Resistance of Al-Zn-Mg-Cu Alloys, Mater. Sci. Eng. A, 2008, 497(1–2), p 426–431

    Google Scholar 

  20. D. William and J. Callister, Fundamentals of Materials Science and Engineering, John Wiley, New York, 2001, p 238–248

  21. B. Arkadi and A. Gerard, On the Propagation Velocity of a Straight Brittle Crack, Int. J. Fract., 2007, 143, p 135–142

    Article  Google Scholar 

  22. L. Paul Hancock, Continental Deformation, Pergamon Press, Oxford, 1994

    Google Scholar 

  23. S. Suresh, Crack Deflection: Implications for the Growth of Long and Short Fatigue Cracks, Metall. Trans. A, 1983, 14A, p 2375–2385

    Google Scholar 

  24. T. Zhai, A.J. Wilkinson, and J.W. Martin, A Crystallographic Mechanism for Fatigue Crack Propagation Through Grain Boundaries, Acta Mater., 2000, 48(20), p 4917–4927

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support provided by the National Key Fundamental Research Project of China (Grant No. 2005CB623705-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Liu, Z., Li, Y. et al. Effects of Severe Cold Rolling on Exfoliation Corrosion Behavior of Al-Zn-Mg-Cu-Cr Alloy. J. of Materi Eng and Perform 21, 1070–1075 (2012). https://doi.org/10.1007/s11665-011-9978-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-9978-0

Keywords

Navigation