Skip to main content

Advertisement

Log in

Microstructure-Mechanical Property Relationships for a Fe/Mn/Cr Rock Bolt Reinforcing Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of low chromium additions to a 0.25C-1.5Mn semikilled steel on microstructure, and tensile and impact behaviors of high strength rock bolt reinforcing bars has been investigated. Although chromium imparted adequate tensile properties at ambient temperature (yield stress: 624 MPa; ultimate tensile stress: 819 MPa; elongation: 12.5%) by forming transformation products such as tempered martensite, lower and upper bainite, and small amounts of acicular ferrite, it increased the ductile-to-brittle transition temperature due to coarser upper bainite in the core region of bar having larger unit crack paths. The synthesized steel is considered to be effective in realizing the desired tensile properties, and suitable for application in rock bolt, as well as other reinforced concrete structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Standard Specifications for Roof and Rock Bolts and Accessories, ASTM F 432-04, Annual Book of ASTM Standards, 2006, 01.08, p 107-121

    Google Scholar 

  2. S. Hashimoto and M. Nakamura, Effect of Microalloying Elements on Mechanical Properties of Reinforcing Bars, Trans. ISIJ Int., 2006, 46(10), p 1510–1515

    Article  CAS  Google Scholar 

  3. H. Weise, W. Kramer, W. Bartels, and W.D. Brand, Reinforcing Steel for Reinforced Concrete and Prestressed Concrete Structures, Steel, Vol 2, 1st ed., Springer Verlag, New York, 1992, p 61–76

  4. A.B. Yure’v, Y.F. Ivanov, V.E. Gromov, and E.V. Kozlov, Structural-Phase State of Thermostrengthened Large Diameter Reinforcement, Steel Transl., 2004, 34(6), p 69–72

    Google Scholar 

  5. B.K. Panigrahi and S.K. Jain, Impact Toughness of High Strength Low Alloy TMT Reinforcement Bar, Bull. Mater. Sci., 2002, 25(4), p 319–324

    Article  CAS  Google Scholar 

  6. B.K. Panigrahi, Microstructure-Related Properties of Some Novel Reinforcement Bar Steel, J. Mater. Eng. Perform. (online). doi:10.1007/s11665-009-9456-0

  7. B.K. Panigrahi, S. Srikanth, and G. Sahoo, Effect of Alloying Elements on Tensile Properties, Microstructure, and Corrosion Resistance of Reinforcing Bar Steel, J. Mater. Eng. Perform. (online). doi:10.1007/s11665-008-9336-z

  8. Y.T. Khudik, A.V. Ivchenko, O.A. Chaikovski, S.A. Madatyan, M.I. Kostyuchenko, and J.N. Surikov, Thermomechanically Strengthened 25 G2S Reinforcing Steel of Strength Class at IVS, Steel USSR, 1988, 18(6), p 272–277

    Google Scholar 

  9. V.I. Stolyarov, V.N. Nikiten, L.J. Efron, and V.G. Laz’ko, Status and Outlook of Production Technology for 700 N/mm2 Yield Strength Weldable Steels, Steel Transl., 1993, 23(6), p 27–32

    Google Scholar 

  10. I.G. Uzlov, Y.T. Khudik, and V.T. Chernenko, Optimisation of Service Properties of Thermomechanically Strengthened Reinforcing Steel, Steel Transl., 1993, 19(11), p 500–502

    Google Scholar 

  11. W. Dahl, Mechanical Properties, Steel, Vol 1, 1st ed., Springer Verlag, New York, 1992, p 203–378

  12. T.N. Baker, Microalloyed Steels, Science Progress, Vol 65, Blackwell Scientific Publisher, Oxford, 1978, p 493–542

  13. M. Sarkaya, B.G. Steinberg, and G. Thomas, Optimisation of Fe/Cr/C Base Structural Steel for Improved Strength and Toughness, Met. Trans., 1982, 13A(12), p 2227–2237

    Google Scholar 

  14. W. Pitsch and G. Sauthoff, Typical Microstructures in Steel, Steel, Vol 1, 1st ed., Springer Verlag, New York, 1992, p 83

  15. H.J. Aaronson, W.T. Reynolds, G.J. Shiflet, and G. Spanos, Bainite Viewed Three Different Ways, Met. Trans., 1990, 21A(6), p 1343–1380

    CAS  Google Scholar 

  16. H. Ohtani, S. Okaguchi, Y. Fuzishiro, and Y. Ohmori, Morphology and Properties of Low Carbon Bainite, Met. Trans., 1990, 21A, p 877–888

    CAS  Google Scholar 

  17. S. Morooka, Y. Tomota, and T. Kamiyama, Heterogenous Deformation Behavior Studied by In-Situ Neutron Diffraction During Tensile Deformation for Ferrite, Martensite, and Pearlite Steel, ISIJ Int., 2008, 48(4), p 525–530

    Article  CAS  Google Scholar 

  18. S. Barnard, G.D.W. Smith, M. Sarikaya, and G. Thomas, Carbon Atom Distribution in a Dual Phase Steel: An Atom Probe Study, Scr. Metall., 1981, 15(4), p 387–392

    Article  CAS  Google Scholar 

  19. G.E. Dieter, Mechanical Metallurgy, SI Metric Edition, Part 3, Chap. 9, McGraw-Hill Book Co., London, 1988, p 325–337

  20. G. Spanos, H.S. Fang, and H.I. Aaronson, A Mechanism for the Formation of Lower Bainite, Met. Trans., 1990, 21A(6), p 1381–1390

    CAS  Google Scholar 

  21. R.W.K. Honeycombe and F.B. Pickering, Ferrite and Bainite in Alloy Steels, Met. Trans., 1972, 3(5), p 1099–1112

    Article  CAS  Google Scholar 

  22. R.W.K. Honeycombe, Structure and Strength of Alloy Steels, Climax Molybdenum Co., London, 1971, p 1–36

    Google Scholar 

  23. B.L. Bramfitt and J.G. Speer, A Perspective on the Morphology of Bainite, Met. Trans., 1990, 21A(4), p 817–829

    CAS  Google Scholar 

  24. F.B. Pickering, Physical Metallurgy and Design of Steels, Chap. 6, 1st ed., Applied Science Publishers, London, 1978

  25. D.V. Edmonds and R.C. Cochrane, Structure-Property Relationships in Bainitic Steel, Met. Trans., 1990, 21A(6), p 1527–1540

    CAS  Google Scholar 

  26. B. Dogan and J.D. Boyd, Through Thickness Failure of Ti-V-N Steel, Met. Trans., 1990, 21A(5), p 1177–1191

    CAS  Google Scholar 

  27. M.L. Joki, V. Vitek, and C.J. McMahon, A Microscopic Theory of Brittle Fracture in Deformable Solids: A Relation Between Ideal Work to Fracture and Plastic Work, Acta Metall., 1980, 28(11), p 1479–1488

    Article  Google Scholar 

  28. D. Kwon and R.J. Asaro, A Study of Void Nucleation, Growth, and Coalescence in Spherodised 1518 Steel, Met. Trans., 1990, 21A(1), p 117–134

    CAS  Google Scholar 

  29. W.D. Biggs, Fracture, Physical Metallurgy, 2nd revised ed., R.W. Cahn, Ed., North Holland Publishing Co., Amsterdam, 1970, p 1199–1232

  30. W.C. Leslie, The Physical Metallurgy of Steels, McGraw Hill International Book Co., New York, p 289–300

Download references

Acknowledgments

Thanks are due the management of Steel Authority of India Limited, Bhilai Steel Plant, and Research & Development Center for Iron and Steel, Ranchi, where the work was carried out. Thanks are also due Mr. C.B. Sharma, Mr. A.K. Singh, Mr. B.B. Patra, Mr. John Guria, and Mr. S.N. Hoda for microstructural and tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, B.K. Microstructure-Mechanical Property Relationships for a Fe/Mn/Cr Rock Bolt Reinforcing Steel. J. of Materi Eng and Perform 19, 885–893 (2010). https://doi.org/10.1007/s11665-009-9540-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9540-5

Keywords

Navigation