Skip to main content
Log in

Modeling of Particle Emission During Dry Orthogonal Cutting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit (D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F.P. Holt, Inhaled Dust and Disease, Wiley-Interscience/John Wiley, New York, 1987

    Google Scholar 

  2. O. Witschger and F. Fabriès, Particules ultra-fines et santé au travail 1-caractéristiques et effets potentiels sur la santé, INRS, Vol 199, 2005, p 21–35. http://www.inrs.fr/htm/particules_ultra-fines_sante_travail.html (in French)

  3. C. Ostiguy, G. Lapointe, L. Ménard, Y. Cloutier, M. Trottier, M. Boutin, M. Antoun, and C. Normand, Les nanoparticules: État des connaissances sur les risques en santé et sécurité du travail, IRSST, 2006. http://www.irsst.qc.ca/files/documents/PubIRSST/R-455.pdf (in French)

  4. Q. Zhang, Y. Kusaka, and K. Donaldson, Comparative Pulmonary Responses Caused by Exposure to Standard Cobalt and Ultra Fine Cobalt, J. Occup. Health, 2000, 42, p 179–184

    Article  CAS  Google Scholar 

  5. G. Oberdörster, E. Oberdörster, and J. Oberdörster, Nanotechnology: An Emerging Discipline Evolving from Studies of Ultra Fine Particles, Environ. Health Perspect., 2005, 113(7), p 823–839

    Article  PubMed  CAS  Google Scholar 

  6. G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schultz, G. Oberdoster, and A. Ziesenis, Translocation of Ultra Fine Insoluble Iridium Particles from Lungs Epithelium to Extra Pulmonary Organs, J. Toxicol. Environ. Health, 2002, 65(20), p 1513–1530

    Article  CAS  Google Scholar 

  7. C. Katz, A. Burkhalter, and W. Dreyer, Fluorescent Latex Micro Spheres as a Retrograde Neuronal Marker for In Vivo and In Vitro Studies of Visual Cortex, Nature, 1984, 310, p 498–500

    Article  CAS  PubMed  ADS  Google Scholar 

  8. A.C. Elder, R. Gelein, M. Azadniv, M. Frampton, J. Finkelstein, and G. Oberdorster, Systemic Effects of Inhaled Ultra Fine Particles in Two Compromised, Aged Rat Strains. Inhale Toxicol., 2004, 16, p 461–471

    Article  CAS  Google Scholar 

  9. M. Ramulu, P. Young, and H. Kao, Drilling of Graphite/Bismaleimide Composite Material, J. Mater. Eng. Perform., 1999, 8, p 330–338

    Article  CAS  Google Scholar 

  10. Y. Kimura and J. Sugimura, Micro Geometry of Sliding Surfaces and Wear Particles, Wear, 1984, 100, p 33–45

    Article  Google Scholar 

  11. Y. Zhu and H.A. Kishawy, Influence of Alumina Particles on the Mechanics of Machining Metal Matrix Composites, Int. J. Mach. Tools Manuf., 2005, 45, p 389–398

    Article  Google Scholar 

  12. M. Nouari and I. Iordanoff, Effect of the Third-Body Particles on the Tool-Chip Contact and Tool-Wear Behaviour During Dry Cutting of Aeronautical Titanium Alloys, Tribol. Int., 2007, 40, p 1351–1359

    Article  CAS  Google Scholar 

  13. M. Cocks, Interaction of Sliding Metal Surfaces, J. Appl. Phys., 1962, 33(7), p 2152–2161

    Article  ADS  Google Scholar 

  14. D.H. Hwang, D.E. Kim, and S.J. Le, Influence of Wear Particle Interaction in the Sliding Interface on Friction of Metals, Wear, 1999, 225–229(1), p 427–439

    Article  Google Scholar 

  15. P.A. Swanson and A.F. Vetter, The Measurement of Abrasive Particle Shape and Its Effect on Wear, ASLE Trans., 1984, 28, p 225–230

    Google Scholar 

  16. S. Bahadur and R. Badruddin, Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion, Wear, 1990, 138, p 189–208

    Article  CAS  Google Scholar 

  17. M. Liebhard and A. Levy, The Effect of Erodent Particle Characteristics on the Erosion of Metals, Wear, 1991, 151, p 381–390

    Article  CAS  Google Scholar 

  18. G.B. Stachowiak and G.W. Stachowiak, The Effects of Particle Characteristics on Three-Body Abrasive Wear, Wear, 2001, 249, p 201–207

    Article  CAS  Google Scholar 

  19. WHO, Hazard Prevention and Control in the Work Environment: Airborne Particle, Prevention and Control Exchange (PACE), World Health Organization, WHO/SDE/OEH/99.14, Geneva, Switzerland, 1999, p 1–219

    Google Scholar 

  20. H. Tönshoff, B. Karpuschewski, and T. Glatzel, Particle Emission and Emission in Dry Grinding, Ann. CIRP, 1997, 46(2), p 693–695

    Article  Google Scholar 

  21. V. Songmene, B. Balout, and J. Masounave, Clean Machining: Experimental Investigation on Particle Formation, Part II: Influence of Machining Strategies and Drill Condition, Int. J. Environ. Conscious Des. Manuf. (ECDM), 2008, 14(1), p 17–33

    Google Scholar 

  22. H.W. Rossmoore and L.A. Rossmoore, Effect of Microbial Growth Products on Biocide Activity in Metalworking Fluids, Symposium on Extra cellular Microbial Products in Bio-Deterioration, Vol 27(2), Apr 9–10, 1990, International Bio-deterioration, 1990, p 145–156

  23. M. Sondossi, H.W. Rossmoore et al., Relative Formaldehyde Resistance Among Bacterial Survivors of Biocide-Treated Metalworking Fluid, Int. Biodeter. Biodegr., 2001, 48(1–4), p 286–300

    Article  CAS  Google Scholar 

  24. D.K. Verma, D.S. Shaw, et al., An Evaluation of Analytical Methods, Air Sampling Techniques, and Airborne Occupational Exposure of MetalWorking Fluids, J. Occup. Environ. Hyg., 2006, 3, p 53–66

    Google Scholar 

  25. NOSH: National Institute for Occupational Safety and Health, Criteria for a Recommended Standard: Occupational Exposure to Metalworking Fluids, DHHS Pub. No. 98-102, NIOSH, Cincinnati, Ohio, 1998

  26. J.W. Sutherland, V.N. Kulur et al., Experimental Investigation of Air Quality in Wet and Dry Turning, CIRP Ann.-Manuf. Technol., 2000, 49(1), p 61–64

    Article  Google Scholar 

  27. I. Zaghbani, V. Songmene, and R. Khettabi, Fine and Ultra Fine Particle Characterisation and Modeling In High Speed Milling of 6061-T6 Aluminium Alloy, J. Mater. Eng. Perform., 2008, ASM International. doi:10.1007/s11665-008-9265-x

  28. B. Balout, V. Songmene, and J. Masounave, An Experimental Study of Particle Generation During Dry Drilling of Pre-Cooled and Pre-Heated Workpiece Materials, J. Manuf. Process., 2007, 9(1), p 23–34

    Article  Google Scholar 

  29. V. Songmene, B. Balout, and J. Masounave, Clean Machining: Experimental Investigation on Particle Formation Part I: Influence of Machining Parameters and Chip Formation, Int. J. Environ. Conscious Des. Manuf. (ECDM), 2008, 14(1), p 1–16

    Google Scholar 

  30. R. Khettabi, V. Songmene, and J. Masounave, Effect of Tool Lead Angle and Chip Formation Mode on Particle Emission in Dry Cutting, J. Mater. Process. Technol., 2007, 194(1–3), p 100–109

    Article  CAS  Google Scholar 

  31. R. Khettabi, V. Songmene, and J. Masounave, Effects of Speeds, Materials and Tool Rake Angles on Metallic Particle Emission During Orthogonal Cutting, J. Mater. Eng. Perform., 2009, Accepted for Publication.

  32. J.R.K. Zipf and Z.T. Bieniawski, A Fundamental Study of Respirable Particle Generation in Coal, Min. Sci. Technol., 1989, 9(1), p 87–99

    Article  CAS  Google Scholar 

  33. S.J. Page and J.A. Organiscak, Semi-Empirical Model for Predicting Surface Coal Mine Drill Respirable Particle Emission, Int. J. Surf. Min. Reclam. Environ., 2004, 18(1), p 42–59

    Article  Google Scholar 

  34. D. Chen, M. Sarumi, and S.T.S. Al-Hassani, Computational Mean Particle Erosion Model, Wear, 1998, 214, p 64–73

    Article  CAS  Google Scholar 

  35. Z. Zhang, L. Zhang, and Y.-W. Mai, Modelling Friction and Wear of Scratching Ceramic Particle-Reinforced Metal Composites, Wear, 1994, 176, p 231–237

    Article  CAS  Google Scholar 

  36. E. Rabinowicz, Shape of Adhesive Wear Particles, ASME, New York, NY, USA, 1985, p 1377–1386

    Google Scholar 

  37. P.L. Ko, S.S. Iyer, H. Vaughan, and M. Gadala, Finite element Modelling of Crack Growth and Wear Particle Formation in Sliding Contact, Wear, 2001, 250–251, p 1265–1278

    Article  Google Scholar 

  38. S.S. Akarca, W.J. Altenhof, and A.T. Alpas, Characterization and Modeling of Subsurface Damage in a 356 Aluminum Alloy Subjected to Multiple Asperity Sliding Contacts, Minerals, Metals and Materials Society, Warrendale, PA, USA, 2005, p 107–120

  39. H.-W. Fang, Characteristic Modeling of the Wear Particle Formation Process from a Tribological Testing of Polyethylene with Controlled Surface Asperities, J. Appl. Polym. Sci., 2007, 103, p 587–594

    Article  CAS  Google Scholar 

  40. H.-W. Fang, et al., Preparation of UHMWPE Particles and Establishment of Inverted Macrophage Cell Model to Investigate Wear Particles Induced Bioactivities, J. Biochem. Biophys. Methods, 2006, 68, p 175–187

    Article  CAS  PubMed  Google Scholar 

  41. S. Rautio, P. Hynynen, I. Welling, I. Hemmil, P. Usenius, and A. Narhi, Modelling of Airborne Particle Emissions in CNC MDF Milling, Holz als Roh- und Werkstoff, 2007, 65(7), p 335–341

    Article  CAS  Google Scholar 

  42. J.Q. Xie, A.E. Bayoumi, and H.M. Zbib, Study on Shear Banding in Chip Formation of Orthogonal Machining, Int. J. Mach. Tools Manuf., 1996, 36(7), p 835–847

    Article  Google Scholar 

  43. I. Zaghbani and V. Songmene, A Force-Temperature Model Including a Constitutive Equation for Dry and High Speed Milling of Aluminum Alloys, J. Mater. Process. Technol., 2008, doi:10.1016/j.jmatprotec.2008.05.050

  44. P.U. Arumugam, A.P. Malshe, S.A. Batzer, and D.G. Bhat, Study of Airborne Particle Emission and Process Performance During Dry Machining of Aluminum-Silicon Alloy with PCD and CVD Diamond Coated Tools NAMRC, May 21–24, 2002 (West Lafayette, ID), Society of Manufacturing Eng., MR02-153, 2002, p 1–8

  45. J. Palmqvist and S. Gustafsson, Emission of Particle in Planning and Milling of Wood, Holz Roh-Werkst, 1999, 57, p 164–170

    Article  CAS  Google Scholar 

  46. P.U. Arumugam, A.P. Malshe, and S.A. Batzer, Dry Machining of Aluminium-Silicon Alloy Using Polished CVD Diamond-Coated Cutting Tools Inserts, Surf. Coat. Technol., 2006, 200(11), p 3399–3403

    Article  CAS  Google Scholar 

  47. P. Atkins and J. de Paula, Physical Chemistry, 8th ed., W. H. Freeman and Company, New York, 2006

    Google Scholar 

  48. J. Masounave, Y. Jallais, and J.-M. Welter, Effect of Temperature on the Drilling of Brass and Aluminum, Matériaux Tech., 2007, 95, p 331–342

    Article  CAS  Google Scholar 

  49. N. Tounsi, Analytical and Numerical Investigation of the Strain Rate Field in the Secondary Shear Zone, 2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2005

Download references

Acknowledgments

The authors thank Rio Tinto Alcan, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Aluminum Research and Development Centre of Quebec (CQRDA), and the Aluminum Research Center (REGAL) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Songmene.

Appendices

Appendix A: The proposed particle emission model solution algorithm

The proposed particle emission model D u (Eq 9) is a function of cutting conditions, work material properties, and tool geometry. It also includes the shear stress, the deformation, the shear force, and the variation of shear stress as a function of the temperature, all being variables which are not easy to determine. Zaghbani and Songmenehave proposed a predictive force temperature model and a solution algorithm for the high speed milling of ductile materials (Ref 43). This oblique cutting model is transformed into a predictive model and solution algorithm for orthogonal cutting. The variables are described, and then used to obtain the final equation for particle emission (Eq 9).

The analytical expressions for the shear strain and shear strain rate (Eq 15 and 17) in the primary shear zone are obtained from the modified Oxley shear plan theory developed by Tounsi (Ref 49).

Thermal and Mechanical Properties

  • ρ Workpiece density in kg/m3

  • K p Workpiece thermal conductivity in W/m

  • C p Workpiece specific heat in J/kg K

  • Kt Tool thermal conductivity in W/m

  • Ct Tool specific heat in J/kg K

  • T0Room temperature in K

  • Tm Material melting temperature in K

Tool Geometry

  • α Rake angle

Cutting Parameters

  • f Feed in mm/rev

  • b Width of cut in mm

  • Vc Cutting velocity in m/s

Needleman-Lemonds Constitutive Equation

  • \( m_{1} ,\,m_{2}, \,{\text{and}}\,n \)

  • \( \dot{\upgamma }_{t} \,,\dot{\upgamma }_{0} \,,\upgamma_{0} ,\,{\text{and}}\,\upalpha_{\text{NL}} \)

Variables

  • A Zvoykin constant for the shear angle

  • Ra Average roughness of the tool rake face

  • V0 Reference cutting velocity in m/s

  • βmax Maximum segmentation coefficient

  • βc Segmentation coefficient

  • EA Particle activation energy

Algorithm

Calculate the shear angle ϕ using Zvorikyn formulae:

$$ \upphi = A + {\frac{\upalpha - \uplambda }{2}} $$
(11)

Calculate the contact length C l

$$ C_{\text{l}} = {\frac{{h\,{ \sin }\,\uptheta }}{{{ \sin }\,\upphi \,\cos (\uptheta + \upalpha - \upphi )}}} $$
(12)

Calculate the ratio C h

$$ C_{\text{h}} = {\frac{{{ \sin }\,\upphi }}{{{ \cos }(\upphi - \upalpha )}}} $$
(13)

Calculate the segmentation density ηS

$$ \upeta_{\text{S}} = {\frac{1}{{C_{\text{l}} }}} $$
(14)

Calculate the average shear strain in the Primary Shear Zone

$$ \bar{\upgamma }_{\text{AB}} = {\frac{{{ \cos }\,\upalpha }}{{{ \cos }(\upphi - \upalpha ){ \sin }\,\upphi }}} $$
(15)

Calculate the coefficient B 0

$$ B_{0} = \sqrt {{\frac{{K_{p} \upgamma_{\text{AB}} }}{Vf}}} $$
(16)

Calculate the shear rate in the Primary Shear Zone

$$ \dot{\bar{\upgamma }}_{\text{AB}} = {\frac{{2V\,{ \cos }\,\upalpha }}{{e_{\text{psz}} \,{ \cos }(\upphi - \upalpha )}}} $$
(17)

If \( \dot{\bar{\upgamma }}_{\text{AB}} \le \dot{\bar{\upgamma }}_{\text{t}} \), then

Solve this equation:

$$ \bar{\uptau }_{\text{AB}} = \uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}}}} \left[ {1 - {\frac{{\uptau_{\text{AB}} \upgamma_{\text{AB}} }}{{\uprho_{p} C_{p} }}}{\frac{0.9}{{1 + 1.329B_{0} }}}} \right] $$
(18)

Get shear stress in the Primary Shear Zone τAB

Else solve this equation:

$$ \bar{\uptau }_{\text{AB}} = \uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}}}} \left[ {1 - {\frac{{\uptau_{\text{AB}} \upgamma_{\text{AB}} }}{{\uprho_{p} C_{p} }}}{\frac{0.9}{{1 + 1.329B_{0} }}}} \right]\left( {1 - {\frac{{\bar{\upgamma }_{\text{t}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}} - {\frac{1}{{m_{2} }}}}} $$
(19)

Get the shear stress in the Primary Shear Zone τAB

Calculate the temperature in the Primary Shear Zone T AB

$$ T_{\text{AB}} = T_{0} + {\frac{{\uptau_{\text{AB}} \upgamma_{\text{AB}} }}{{\uprho_{p} C_{p} }}}{\frac{0.9}{{1 + 1.329B_{0} }}} $$
(20)

Calculate the shearing force F sh

$$ F_{\text{sh}} = {\frac{{\uptau_{\text{AB}} fb}}{{{ \sin }\,\upphi }}} $$
(21)

Calculate the chip segmentation coefficient β using Xie formulae (Ref 42):

$$ \upbeta = - {\frac{\sqrt 3 }{m}}\left[ {\upmu + {\frac{0.9(\partial \uptau /\partial T)}{{\uprho_{p} C_{p} (1 + 1.328B_{0} )}}}} \right]\left[ {\upmu \upgamma + 1 - {\frac{{0.664B_{0} }}{{1 + 1.328B_{0} }}}} \right] $$
(22)

Calculate the dust unit D u using Eq 9.

Appendix B: The Flow Localization Parameter β

The proposed flow localization parameter β of the model (Eq 4) developed by Xie et al. (Ref 42) is a function of the cutting conditions, work material properties, and tool geometry.

Thermal and Mechanical Properties

  • μ Strain hardening parameter

  • m Strain rate sensitivity

Algorithm

Calculate the average shear strain in the Primary Shear Zone (Eq 15)

Calculate the coefficient B 0 (Eq 16)

Calculate the shear rate in the Primary Shear Zone (Eq 17)

Calculate the Needleman-Lemonds constitutive equation:

$$ \left\{ {\begin{array}{*{20}c} \begin{aligned} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right) = \left( {{\frac{{\bar{\uptau }_{\text{AB}} }}{{g(\bar{\uptau }_{\text{AB}} )}}}} \right)^{{m_{1} }} \to \dot{\bar{\upgamma }}_{\text{AB}} \le \dot{\bar{\upgamma }}_{\text{t}} \hfill \\ \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)\left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{t}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{{m_{2} }}{{m_{1} }}} - 1}} = \left( {{\frac{{\bar{\uptau }_{\text{AB}} }}{{g(\bar{\uptau }_{\text{AB}} )}}}} \right)^{{m_{2} }} \to \dot{\bar{\upgamma }}_{\text{AB}} \ge \dot{\bar{\upgamma }}_{\text{t}} \hfill \\ \end{aligned} \hfill \\ {g(\bar{\uptau }_{\text{AB}} ) = \uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left[ {1 - \upalpha_{\text{NL}} \left( {T - T_{0} } \right)} \right]} \hfill \\ \end{array} } \right. $$
(23)

where n is the hardening coefficient, αNL is the coefficient for thermal softening, τ0 is the elastic average shear stress, \( \bar{\uptau } \) is the average shear stress, \( \dot{\bar{\upgamma }}_{\text{t}} \) is the transition shear strain rate, m 1 and m 2 are the coefficients of sensitivity to the strain rate in the low and high regimes, respectively, and \( \dot{\bar{\upgamma }}_{0} \) is the reference shear strain rate.

The shear stress in the Primary Shear Zone will be

$$ \bar{\uptau}_{\text{AB}} = \left\{ {\begin{array}{*{20}c} {\uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}}}} \left[ {1 - \upalpha_{\text{NL}} \left( {T - T_{0} } \right)} \right] \to \dot{\bar{\upgamma }}_{\text{AB}} \le \dot{\bar{\upgamma }}_{\text{t}} } \hfill \\ {\uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{2} }}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{t}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}} - {\frac{1}{{m_{2} }}}}} \left[ {1 - \upalpha_{\text{NL}} \left( {T - T_{0} } \right)} \right] \to \dot{\bar{\upgamma }}_{\text{AB}} \ge \dot{\bar{\upgamma }}_{\text{t}} } \hfill \\ \end{array} } \right. $$
(24)

If \( \dot{\bar{\upgamma }}_{\text{AB}} \le \dot{\bar{\upgamma }}_{\text{t}} \), then

Calculate the variation of shear stress in the Primary Shear Zone as

$$ {\frac{{\partial{\bar{\uptau}}_{\text{AB}} }}{\partial T}} = \uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{1} }}}}} \left[ { - \upalpha_{\text{NL}} } \right] $$
(25)

Get the shear stress in the Primary Shear Zone \( \uptau_{\text{AB}} \)

Else Calculate the variation of shear stress in the Primary Shear Zone as

$$ {\frac{{\partial\bar{\uptau}_{\text{AB}} }}{\partial T}} = \uptau_{0} \left( {1 + {\frac{{\bar{\upgamma }_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{n}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{AB}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{{\frac{1}{{m_{2} }}}}} \left( {1 + {\frac{{\dot{\bar{\upgamma }}_{\text{t}} }}{{\bar{\upgamma }_{0} }}}} \right)^{{\left( {{\frac{1}{{m_{1} }}} - {\frac{1}{{m_{2} }}}} \right)}} \left[ { - \upalpha_{\text{NL}} } \right] $$
(26)

Get the shear stress in the Primary Shear Zone \( \uptau_{\text{AB}} \)

Calculate the chip segmentation coefficient β using Xie (Ref 42) formulae (Eq 22).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khettabi, R., Songmene, V., Zaghbani, I. et al. Modeling of Particle Emission During Dry Orthogonal Cutting. J. of Materi Eng and Perform 19, 776–789 (2010). https://doi.org/10.1007/s11665-009-9538-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9538-z

Keywords

Navigation