Skip to main content
Log in

Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A concise yet a fairly comprehensive overview of the friction stir welding (FSW) process is provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo-mechanical finite-element procedure developed in our prior study. Particular attention is given to proper modeling of the welding work-piece material behavior during the FSW process. Specifically, competition and interactions between plastic-deformation and dynamic-recrystallization processes are considered to properly account for the material-microstructure evolution in the weld nugget zone. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes. Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991

  2. C.J. Dawes and W.M. Thomas, Friction Stir Process Welds Aluminum Alloys, Weld. J., 1996, 75, p 41–52

    Google Scholar 

  3. W.M. Thomas and R.E. Dolby, Friction Stir Welding Developments, Proceedings of the Sixth International Trends in Welding Research, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, and J.M. Vitek, Ed. (Materials Park, OH, USA), ASM International, 2003, p 203–211

  4. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53, p 980–1023

    Article  CAS  Google Scholar 

  5. M. Grujicic, T. He, G. Arakere, H.V. Yalavarthy, C.-F. Yen, and B.A. Cheeseman, Fully-Coupled Thermo-Mechanical Finite-Element Investigation of Material Evolution During Friction-Stir Welding of Aa5083, J. Eng. Manuf., Sept 2009 (accepted for publication).

  6. M.B. Bever, D.L. Holt, and A.L. Titchener, Stored Energy of Cold Work, Prog. Mater. Sci., 1973, 17, p 5–192

    Article  Google Scholar 

  7. Q. Zhu, C.M. Sellars, and H.K.D.H. Bhadeshia, Quantitative Metallography of Deformed Grains, Mater. Sci. Technol., 2007, 23(7), p 757–766

    Article  CAS  Google Scholar 

  8. M.V. Belous and V.T. Cherepin, Changes in the Steel Carbide Phase Under Influence of Cold Plastic Deformation, Fiz. Met. Metalloved, 1962, 14, p 48–54

    CAS  Google Scholar 

  9. F. Danoix, D. Julien, X. Sauvage, and J. Copreaux, Direct Evidence of Cementite Dissolution in Drawn Pearlitic Steels Observed by Tomographic Atom Probe, Mater. Sci. Eng. A, 1998, 250, p 8–13

    Article  Google Scholar 

  10. M. Umemoto, Z.G. Liu, X.J. Hao, K. Masuyama, and K. Tsuchiya, Formation of Nanocrystalline Ferrite Through Rolling and Ball Milling, Mater. Sci. Forum, 2001, 12, p 167–174

    Article  Google Scholar 

  11. Y. Ivanisenko, I. MacLaren, R.Z. Valiev, and H.J. Fecht, First Observation of a Shear-Induced Bcc to Fcc Transformation in Nanocrystalline Ferrite, Adv. Eng. Mater., 2005, 7, p 1011–1014

    Article  CAS  Google Scholar 

  12. W. Lojkowski, Yu. Ivanisenko, and H.-J. Fecht, Strain Induced Cementite Dissolution in Pearlitic Steels as a Classical Example of Mechanical Alloying, Trans. Indian Inst. Met., 2005, 13, p 939–1227

    Google Scholar 

  13. E.S. Gorkunov, S.V. Grachev, S.V. Smirnov, V.M. Somova, S.M. Zadvorkin, and L.E. Kar’kina, Relation of Physical-Mechanical Properties to the Structural Condition of Severely Deformed Patented Carbon Steels at Drawing, Russ. J. Nondestruct. Test., 2005, 41, p 65–79

    Article  CAS  Google Scholar 

  14. M.J. Russell and H. Shercliff, Analytical Modelling of Friction Stir Welding, INALCO’98: Seventh International Conference on Joints in Aluminium, M.J. Russell and R. Shercliff R, Ed. (Cambridge, UK) TWI, 1999, p 197–207

  15. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 10, p 165–174

    Article  Google Scholar 

  16. S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite Element Simulation of Material Flow in Friction Stir Welding, Sci. Technol. Weld. Join., 2001, 6, p 191–193

    Article  Google Scholar 

  17. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 12, p 743–748

    Google Scholar 

  18. R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three-Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding, Metall. Mater. Trans. A, 2006, 37, p 1247–1259

    Article  Google Scholar 

  19. R. Nandan, G.G. Roy, and T. DebRoy, Three-Dimensional Heat and Material Flow During Friction Stir Welding of Mild Steel, Acta Mater., 2007, 12, p 883–895

    Article  CAS  Google Scholar 

  20. R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 9, p 434–444

    Google Scholar 

  21. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part II: Nature and Origins, Mater. Sci. Technol., 2001, 17, p 366–375

    Article  CAS  Google Scholar 

  22. J.A. Francis, H.J. Stone, S. Kundu, R.B. Rogge, H.K.D.H. Bhadeshia, and P.J. Withers, Transformation Temperatures and Welding Residual Stresses in Ferritic Steels, Proceedings of PVP2007, ASME Pressure Vessels and Piping Division Conference (San Antonio, Texas), American Society of Mechanical Engineers (ASME), 2007, p 1–8

  23. H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel, Material Flow in Butt Friction Stir Welds in AA2024-T3, Acta Mater., 2006, 54(4), p 1199–1209

    CAS  Google Scholar 

  24. L. Fratini, G. Buffa, D. Palmeri, J. Hua, and R. Shivpuri, Material Flow in FSW of AA7075-T6 Butt Joints: Numerical Simulations and Experimental Verifications, Sci. Technol. Weld. Join., 2006, 11(4), p 412–421

    Article  CAS  Google Scholar 

  25. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds, Prediction of Temperature Distribution and Thermal History During Friction Stir Welding: Input Torque Based Model, Sci. Technol. Weld. Join., 2003, 8, p 165–174

    Article  Google Scholar 

  26. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding, Scripta Mater., 2000, 12, p 743–748

    Google Scholar 

  27. R. Nandan, T.J. Lienert, and T. DebRoy, Toward Reliable Calculations of Heat and Plastic Flow During Friction Stir Welding of Ti-6Al-4V Alloy, Int. J. Mater. Res., 2008, 99, p 434–444

    CAS  Google Scholar 

  28. Y. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metall. Mater. Trans. A, 2002, 33(3), p 625–635

    Article  Google Scholar 

  29. M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, and H. Shercliff, Dissimilar Friction Stir Welds in AA5083-AA6082. Part I: Process Parameter Effects on Thermal History and Weld Properties, Metall. Mater. Trans. A, 2006, 37(7), p 2183–2193

    Article  Google Scholar 

  30. W.M. Thomas, K.I. Johnson, and C.S. Wiesner, Friction Stir Welding-Recent Developments in Tool and Process Technologies, Adv. Eng. Mater., 2003, 5, p 485–490

    Article  Google Scholar 

  31. W.M. Thomas, Friction Stir Welding—Recent Developments, Mater. Sci. Forum, 2003, 426–432, p 229–236

    Article  Google Scholar 

  32. W.M. Thomas, D.G. Staines, K.I. Johnsonand, and P. Evans, Com-Stir—Compound Motion for Friction Stir Welding and Machining, Adv. Eng. Mater., 2003, 5, p 273–274

    Google Scholar 

  33. Y.H. Zhao, S.B. Lin, F. Qu, and L. Wu, Influence of Pin Geometry on Material Flow in Friction Stir Welding Process, Mater. Sci. Technol., 2006, 22, p 45–50

    Article  CAS  Google Scholar 

  34. R. Crawford, G.E. Cook, A.M. Strauss, D.A. Hartman, and M.A. Stremler, Experimental Defect Analysis and Force Prediction Simulation of High Weld Pitch Friction Stir Welding, Sci. Technol. Weld. Join., 2006, 11, p 657–665

    Article  Google Scholar 

  35. H.J. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile Fracture Location Characterisation of Friction Stir Welded Joints of Different Aluminium Alloys, J. Mater. Sci. Technol., 2004, 20, p 103–105

    CAS  Google Scholar 

  36. X. Long and S.K. Khanna, Modelling of Electrically Enhanced Friction Stir Welding Process Using Finite Element Method, Sci. Technol. Weld. Join., 2005, 10, p 482–487

    Article  CAS  Google Scholar 

  37. Y.G. Kimand, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three Defect Types in Friction Stir Welding of Aluminium Die Casting Alloys, Mater. Sci. Eng. A, 2006, 415, p 250–254

    Article  CAS  Google Scholar 

  38. K. Elangovan and V. Balasubramanian, Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing Zone in AA2219 Aluminium Alloy, Mater. Sci. Eng. A, 2007, 459, p 7–18

    Article  CAS  Google Scholar 

  39. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1: Measurement Techniques, Mater. Sci. Technol., 2001, 17, p 355–365

    Article  CAS  Google Scholar 

  40. M. Peel, A. Steuwer, M. Preuss, and P.J. Withers, Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds, Acta Mater., 2003, 51(16), p 4791–4801

    Article  CAS  Google Scholar 

  41. M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, and M.A. Sutton, Predicting Residual Thermal Stresses in Friction Stir Welded Metals, J. Mater. Process. Technol., 2006, 174, p 195–203

    Article  CAS  Google Scholar 

  42. ABAQUS Version 6.8-1, User Documentation, Dassault Systems, 2008, p 1–254

  43. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 1983

  44. K. Kannan, J.S. Vetrano, and C.H. Hamilton, Effects of Alloy Modification and Thermomechanical Processing on Recrystallization of Al-Mg-Mn Alloys, Metall. Mater. Trans. A, 1996, 27(10), p 2947–2957

    Article  Google Scholar 

  45. R.E. Reed-Hill, Physical Metallurgy Principles, PWS Publishing Company, Massachusetts, 1994

    Google Scholar 

  46. D.C. Hofmann and K.S. Vecchio, Thermal History Analysis of Friction Stir Processed and Submerged Friction Stir Processed Aluminum, Mater. Sci. Eng. A, 2007, 465(1–2), p 165–175

    Google Scholar 

  47. W. Woo, Z. Feng, X.L. Wang, D.W. Brown, B. Clausen, and K. An, In Situ Neutron Diffraction Measurements of Temperature and Stresses During Friction Stir Welding of 6061-T6 Aluminium Alloy, Sci. Technol. Weld. Join., 2007, 12(4), p 298–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research article is based on project with financial support under the U.S. Army/Clemson University Cooperative Agreements, W911NF-04-2-0024 and W911NF-06-2-0042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Arakere, G., Yalavarthy, H.V. et al. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding. J. of Materi Eng and Perform 19, 672–684 (2010). https://doi.org/10.1007/s11665-009-9536-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9536-1

Keywords

Navigation