Skip to main content
Log in

High-Temperature Deformation Behavior of Ti-6Al-4V Alloy without and with Hydrogenation Content of 0.27 wt.%

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Isothermal compression of Ti-6Al-4V alloy without and with hydrogenation content of 0.27 wt.% was carried out on Gleeble-1500D thermal simulation machine at deformation temperature between 760 and 1000 °C and strain rate from 0.001 to 1 s−1. The experimental results show that hydrogenation can decrease the deformation temperature or increase the strain rate of Ti-6Al-4V alloy. The apparent activation energy was determined to be 667 kJ mol−1 for isothermal compression of the Ti-6Al-4V alloy without hydrogenation content of 0.27 wt.% in the α + β phase region (760-960 °C), and this value was about 655 and 199 kJ mol−1 for the alloy with 0.27 wt.% of hydrogenation content in the α + β phase region (760-840 °C) and β phase region (840-960 °C), respectively. Constitutive equation was developed for the high-temperature deformation of Ti-6Al-4V alloy both without and with hydrogenation content of 0.27 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.H. Froes, O.N. Senkov, and J.I. Qazi, Hydrogen as a Temporary Alloying Element in Titanium Alloys: Thermohydrogen Processing, Int. Mater. Rev. 49, 2004, 227-245.

    Article  CAS  Google Scholar 

  2. W.R. Kerr, R.R. Smith, M.E. Rosenblum, F.J. Gurney, Y.R. Mahajan, and L.R. Bidwell, Hydrogen as an Alloying Element in Titanium (HYDROVAC), Titanium 80: Science and Technology (Warrendale, PA), TMS, 1980, 4, p 2477–2486

  3. N. Eliaz, D. Eliezer, D.L. Olson. Hydrogen-Assisted Processing of Materials. Mater. Sci. Eng., A289, 2000, 41-53.

    Article  Google Scholar 

  4. V.A. Goltsov, Hydrogen Treatment (processing) of Materials: Current Status and Prospects, J. Alloy. Compd., 293-295, 1999, 844-857.

    Article  Google Scholar 

  5. A.A. Ilyin, I.S. Polkin, A.M. Momonov, and V.K. Nosov, Thermohydrogen Treatment—The Base of Hydrogen Technology of Titanium Alloys, Titanium 95: Science and Technology (London), The Institute of Materials, 1995, 4, p 2462–2469

  6. D. Elieaer, N. Eliaz, O.N. senkov, and F.H. Fores, Positive Effects of Hydrogen in Metals, Mater. Sci. Eng., A280, 2000, 220-224.

    Article  Google Scholar 

  7. S.Q. Zhang, and L.R. Zhao, Effect of Hydrogen on the Superplasticity and Microstructure of Ti-6Al-4 V Alloy, J. Alloy. Compd., 218, 1995, 233-236.

    Article  CAS  Google Scholar 

  8. O.N. Senkov, and J.J. Jonas, Effect of Phase Composition and Hydrogen Level on the Deformation Behavior of Titanium-Hydrogen Alloys. Metall. Mater. Trans., 27A, 1996, 1869-1876.

    Article  CAS  Google Scholar 

  9. Y.Y. Lin, M.Q. Li, Y. Niu, and W.F. Zhang, Effect of Hydrogenation on the Microstructure During the Isothermal Compression of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo Alloy. Mater. Sci. Forum., 551-552, 2007, 417-420.

    Article  Google Scholar 

  10. Y.Y. Lin, M.Q. Li, W.F. Zhang, and Y. Niu, Deformation Behavior in the Isothermal Compression of Hydrogenated Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo Alloy. J. Mater. Eng. Perform. 16, 2007, 93-96.

    Article  CAS  Google Scholar 

  11. Y. Zhang, and S.Q. Zhang, Hydrogen Effects on High Temperature Deformation Characteristics of a Cast Ti-14Al-19Nb-3 V-2Mo Alloy, Scripta. Mater., l37, 1997, 1315-1321.

    Google Scholar 

  12. Y.X. Chen, X.J. Wan, F. Li, Q.J. W, and Y.Y. Liu, The Behavior of Hydrogen in High Temperature Titanium alloy Ti-60. Mater. Sci. Eng., A466, 2007, 156-159.

    Article  Google Scholar 

  13. S.L. Semiantin, and T.R. Bieler, The Effect of Alpha Platelet Thickness on Plastic Flow During Hot Working of Ti–6Al–4 V with a Transformed Miscrostructure, Acta. Mater., 49, 2001, 3565– 3573.

    Article  Google Scholar 

  14. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier and P.V.R.K Prasad, Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4 V with Lamellar Starting Structure, Mater. Sci. Eng., A325, 2002, 112-125.

    Article  Google Scholar 

  15. S. Tamirisakandala, B.V. Vedam, and R.B. Bhat. Recant Advances in the Deformation Processing of Titanium alloys. J. mater. Eng. Perform., 6, 2003, 661-673.

    Article  Google Scholar 

  16. J.I. Qazi, O.N. Senkov, J. Rahim, A. Genc, and F.H. Fores, Phase Transformations in Ti-6Al-4 V-xH Alloys, Metall. Mater. Trans., 32A, 2001, 2453-2463.

    Article  CAS  Google Scholar 

  17. P. Wanjara, M. JaHazi, H. Monajati, S. Yue, and J.P. Immarigeon, Hot Working Behavior of Near-Alpha Alloy IMI834, Mater. Sci. Eng., A396, 2005, 50-60.

    Article  Google Scholar 

  18. C.M. Sellars, and W.J. Tegart, Acta. Metall., 14, 1966, 1136-1138.

    Article  CAS  Google Scholar 

  19. R. Ding, Z.X. Guo, and A. Wilson, Microstructural Evolution of a Ti-6Al-4 V Alloy During Thermomechanical Processing, Mater. Sci. Eng., A 327, 2002, 233-245.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the National Natural Science Foundation of China with Grant No. 50371068, and the Aviation Scientific Foundation of AVIC with Grant No. 05H53058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoquan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, Y., Li, M., Hou, H. et al. High-Temperature Deformation Behavior of Ti-6Al-4V Alloy without and with Hydrogenation Content of 0.27 wt.%. J. of Materi Eng and Perform 19, 59–63 (2010). https://doi.org/10.1007/s11665-009-9427-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9427-5

Keywords

Navigation