Skip to main content
Log in

Mechanical Characteristics of Superplastic Deformation of AZ31Magnesium Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As the lightest constructional metal on earth, magnesium (and its alloys) offers a great potential for weight reduction in the transportation industry. Many automotive components have been already produced from different magnesium alloys, but they are mainly cast components. Production of magnesium outer body components is still hindered by the material’s inferior ductility at room temperature. Magnesium alloys are usually warm-formed to overcome this problem; however, it was observed that some magnesium alloys exhibits superior ductility and superplastic behavior at higher temperatures. More comprehensive investigation of magnesium’s high temperature behavior is needed for broader utilization of the metal and its alloys. In this work, the high temperature deformation aspects of the AZ31B-H24 commercial magnesium alloy are investigated through a set of uniaxial tensile tests that cover forming temperatures ranging between 23 and 500 °C, and constant true strain rates between 2 × 10−5 and 2.5 × 10−2 s−1. The study targets mainly the superplastic behavior of the alloy, by characterizing flow stress, elongation-to-fracture, and strain rate sensitivity under various conditions. In addition, the initial anisotropy is also investigated at different forming temperatures. The results of these and other mechanical and microstructural tests will be used to develop a microstructure-based constitutive model that can capture the superplastic behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Engelhart and C. Moedel, Die Entwicklung des Audi A2, ein neues Fahrzeugkonzept in der Kompaktwagenklasses (The Development of the Audi A2, a New Vehicle Concept in the Compact Car Class), Technologien um das 3l-Auto, November 16–18, 1999 (Brunswick, Germany), p 11–21, in German

  2. G. Cole, How Magnesium Can Achieve High Volume Usage in Ground Transportation, Magnesium into the Next Millennium, The 56th Annual Meeting of the International Magnesium Association, June 6–9, 1999 (Rome, Italy), p 21–30

  3. A. Jambor, M. Beyer (1997) New Cars - New Materials, Mater. Des., 18(4-6): 203–209

    CAS  Google Scholar 

  4. S. Schumann and F. Friedrich, The Use of Magnesium in Cars - Today and in the Future, Mg Alloys and their Applications, April 28–30, 1998 (Wolfsburg, Germany)

  5. D. Carle, G. Blount (1999) The Suitability of Aluminum as an Alternative Material for Car Bodies. Mater. Des., 20(5): 267–272

    CAS  Google Scholar 

  6. Tabellenbuch Metall, 41st ed., 6th pr., Verlag Europa Lehrmittel, 2001, in German

  7. H. Friedrich and S. Schumann, The Second Age of Magnesium: Research Strategies to Bring the Automotive Industry’s Vision to Reality, The Second Israeli International Conference on Mg Science and Technology, February 2000 (Sdom, Israel), p 9–18

  8. E. Doege, K. Dröder (2001) Sheet Metal Forming of Magnesium Wrought Alloys – Formability and Process Technology. J. Mater. Process. Technol., 115: 14–19

    Article  CAS  Google Scholar 

  9. E. Doege, L-E. Elend, and F. Meiners, Comparative Study of Massive and Sheet Lightweight Components Formed of Different Lightweight Alloys for Automotive Applications, ISATA 33rd 2000: Automotive & Transportation Technology, September 25–27, 2000 (Dublin, Ireland), p 87–94

  10. K. Dröder and St. Janssen, Forming of Magnesium Alloys – A Solution for Lightweight Construction, 1999 International Body Engineering Conference Proceedings, SAE, 1999 (Detroit, Michigan)

  11. E. Doege, W. Sebastian, K. Dröder, and G. Kurz, Increased Formability of Mg-Sheets Using Temperature Controlled Deep Drawing Tools, Proceedings of the Second Global Symposium on Innovations in processing and Manufacturing of Sheet Materials, TMS 2001, p 53–60

  12. H. Watanabe, H. Tsutsui, T. Mukai, Y. Okanda, M. Kohzu, K. Higashi (2000) Superplastic Behavior in Commercial Wrought Magnesium Alloys. Mater. Sci. Forum, 350–351: 171–176

    Google Scholar 

  13. W. Kim, S. Chung, C. Chung, D. Kum (2001) Superplasticity in Thin Magnesium Alloy Sheets and Deformation Mechanism Maps for Magnesium Alloys at Elevated Temperatures. Acta Mater., 49(16): 3337–3345

    Article  CAS  Google Scholar 

  14. L. Tsao, C. Wu, T. Chuang (2001) Evaluation of Superplastic Formability of the AZ31 magnesium Alloy. Mater. Res. Adv. Tech., 92(6): 572–577

    CAS  Google Scholar 

  15. F. Abu-Farha and M. Khraisheh, Deformation Characteristics of AZ31 Magnesium Alloy Under Various Forming Temperatures and Strain Rates, Proceedings of the 8th ESAFORM Conference on Material Forming, April 27–29, 2005 (Cluj-Napoca, Romania), p 627–630

  16. K. Siegert, S. Jäger, M. Vulcan (2003) Pneumatic Bulging of Magnesium AZ31 Sheet Metals at Elevated Temperatures. Ann. CIRP, 52: 241–244

    Google Scholar 

  17. A. Jäger, P. Lukas, V. Gärtnerova, J. Bohlen, K. Kainer (2004) Tensile Properties of Hot Rolled AZ31 Mg Alloy Sheets at Elevated Temperatures. J. Alloy. Compd., 378: 184–187

    Article  CAS  Google Scholar 

  18. B. Lee, K. Shin, C. Lee (2005) High Temperature Deformation Behavior of AZ31 Mg Alloy. Mater. Sci. Forum, 475–479: 2927–2930

    Google Scholar 

  19. S. Agnew, O. Duygulu (2003) A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms. Mater. Sci. Forum, 419–422: 177–188

    Google Scholar 

  20. H. Watanabe, A. Takara, H. Somekawa, T. Mukai, K. Higashi (2005) Effect of Texture on Tensile Properties at Elevated Temperatures in an AZ31 Magnesium Alloy. Scr. Mater., 52: 449–454

    Article  CAS  Google Scholar 

  21. J. Tan, M. Tan (2002) Superplasticity in a Rolled Mg-3Al-1Zn Alloy by Two-Stage Deformation Method. Scr. Mater., 47(2): 101–106

    Article  CAS  Google Scholar 

  22. M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, and K. Higashi, Microstructural Evolution and Superplasticity of Rolled Mg-9Al-1Zn, Mater. Sci. Eng. A, 2000, 290(1–2), p 139–144

    Google Scholar 

  23. Y. Chino, H. Iwasaki (2004) Cavity Growth Rate in Superplastic 5083 Al and AZ31 Mg Alloys. J. Mater. Res., 19(11): 3382–3388

    Article  CAS  Google Scholar 

  24. A. Ben-Artzy, A. Shtechman, A. Bussiba, Y. Salah, S. Ifergan, M. Kupiec, and R. Grinfeld, Low Temperature Super-plasticity Response of AZ31B Magnesium Alloy with Severe Plastic Deformation, Magnesium Technology 2003, Proceedings of the 2003 TMS Annual Meeting, 2003 (San Diego, California), p 259–263

  25. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan, M. Kupiec (2001) Grain Refinement of AZ31 and AZ60 Mg Alloys – Towards Superplasticity Studies. Mater. Sci. Eng. A, 302(1): 56–62

    Article  Google Scholar 

  26. X. Wu, Y. Liu (2002) Superplasticity of Coarse-Grained Magnesium Alloy. Scr. Mater., 46(4): 269–274

    Article  CAS  Google Scholar 

  27. D. Yin, K. Zhang, G. Wang, W. Han (2004) Superplasticity of Fine-Grained AZ31 Mg Alloy Sheets. T. Nonferr. Metal. Soc., 14(6): 1100–1105

    CAS  Google Scholar 

  28. D. Yin, K. Zhang, G. Wang, W. Han (2005) Superplasticity and Cavitation in AZ31 Mg Alloy at Elevated Temperatures. Mater. Lett., 59: 1714–1718

    Article  CAS  Google Scholar 

  29. C. Lee, J. Huang (2004) Cavitation Characteristics in AZ31 Mg Alloys During LTSP or HSRSP. Acta Mater. 52: 3111–3122

    Article  CAS  Google Scholar 

  30. X. Wu, Y. Liu, H. Hao (2001) High Strain Rate Superplasticity and Microstructure Study of a Magnesium Alloy. Mater. Sci. Forum, 357–359: 363–370

    Google Scholar 

  31. F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, C. Hartig, K. Kainer (2003) Anisotropic Properties of Magnesium Sheet AZ31. Mater. Sci. Forum, 419–422: 315–320

    Article  Google Scholar 

  32. F. Kaiser, J. Bohlen, D. Letzig, K. Kainer, A. Styczynski, C. Hartig (2003) Influence of Rolling Conditions on the Microstructure and Mechanical Properties of Magnesium Sheet AZ31. Adv. Eng. Mater., 5(12): 891–896

    Article  CAS  Google Scholar 

  33. F. Abu-Farha and M. Khraisheh, On the High Temperature Testing of Superplastic Materials. ASM Journal of Materials Engineering and Performance, Doi: 10.1007/s11665-007-9024-4

  34. M. Khraisheh, H. Zbib, C. Hamilton, A. Bayoumi (1997) Constitutive Modeling of Superplastic Deformation. Part I: Theory and Experiments. Int. J. Plasticity, 13(1–2): 143–164

    Article  CAS  Google Scholar 

  35. F. Abu-Farha, M. Khraisheh (2004) Constitutive Modeling of Deformation-Induced Anisotropy in Superplastic Materials. Mater. Sci. Forum, 447–448: 165–170

    Google Scholar 

Download references

Acknowledgment

The support of the National Science Foundation, CAREER Award # DMI-0238712, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwan K. Khraisheh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Farha, F.K., Khraisheh, M.K. Mechanical Characteristics of Superplastic Deformation of AZ31Magnesium Alloy. J. of Materi Eng and Perform 16, 192–199 (2007). https://doi.org/10.1007/s11665-007-9031-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-007-9031-5

Keywords

Navigation