Skip to main content
Log in

Microstructure and chemistry of Cu-Ge ohmic contact layers to GaAs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report systematic studies of microstructure and chemistry of Cu-Ge alloyed ohmic contacts to n-GaAs with very low specific contact resistivity ((4-6) x 10-7 Ωcm2 for n∼l x 1017cm-3). Using transmission electron microscopy, x-ray microanalysis, and secondary ions mass spectroscopy, we investigated chemistry of phase formation, crystal structure, and mechanism of ohmic contact formation in Cu-Ge alloyed layers with Ge concentration in the range of 0–40 at.%. Layers with Ge deficiency to form ζ-phase (average composition Cu5Ge) reveal the formation of a nonuniform intermediate layer of hexagonal -Cu3As phase which grows epitaxially on Ga111 planes of GaAs. In this case, released Ga diffuses out and dissolves in the alloyed layer stabilizing ζ-phase, which is formed in the structures with average Ge concentration as low as 5 at.%. Unique properties of the contact layers, namely low specific contact resistivity, high thermal stability, interface sharpness, and high contact layer uniformity are related to the formation of an ordered orthorhombic ε1 Cu3Ge phase. In the alloyed layer with Ge concentration >25 at.%, no phases due to the chemical reactions with GaAs in the interface region were found demonstrating the chemical inertness of the ε1Cu3Ge ordered phase with respect to GaAs. This results in sharp interfaces and uniform chemical composition, the characteristics needed for superior contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Braslau, J.B. Gunn and J.L. Staples, Solid-State Electron. 10, 381 (1967).

    Article  CAS  Google Scholar 

  2. M. Murakami, Mater. Sci. Rep. 5, 273 (1990).

    Article  CAS  Google Scholar 

  3. T.S. Kuan, P.E. Batson, T.N. Jackson, H. Rupprecht and E.L. Wilkie, J. Appl. Phys. 54, 6952 (1983).

    Article  CAS  Google Scholar 

  4. Y.-C. Shih, S.M. Murakami, E.L. Wilkie and A.C. Callegari, J. Appl. Phys. 62, 582 (1987).

    Article  CAS  Google Scholar 

  5. M.O. Aboelfotoh, C.L. Lin and J.M. Woodall, Appl. Phys. Lett. 65, 3245 (1994).

    Article  CAS  Google Scholar 

  6. M.O. Aboelfotoh, H.M. Tawancy and L. Krusin-Elbaum, Appl. Phys. Lett. 63, 1622 (1993).

    Article  CAS  Google Scholar 

  7. M.O. Aboelfotoh, S. Oktyabrsky, J. Narayan and J.M. Woodall J. Appl. Phys. 75, 5760 (1994).

    Article  Google Scholar 

  8. H.K. Liou, J.S. Huang and KN. Tu, J. Appl. Phys. 77, 5443 (1995).

    Article  CAS  Google Scholar 

  9. C. Barrett and T.B. Massalski, Structure of Metals 3rd. ed. (Oxford: Pergamon, 1980).

    Google Scholar 

  10. M. Hansen, Constitution of Binary Alloys (New York: McGraw-Hill, 1958), pp. 160, 585.

    Google Scholar 

  11. W. Hume-Rothery, G.W. Mabbot and K.M. Channel-Evans, Phil. Trans. Roy. Soc. A 223, 1 (1934).

    Article  Google Scholar 

  12. J.W. Reynolds and W. Hume-Rothery, J. Inst. Metals 85, 119 (1956).

    Google Scholar 

  13. P.S. Kotval and R.W.K. Honeycombe, Acta Metal. 16, 597 (1968).

    Article  CAS  Google Scholar 

  14. S. Oktyabrsky, M.O. Aboelfotoh and J. Narayan, J. Electron. Mater. 25, 1662 (1996).

    CAS  Google Scholar 

  15. N. Newman, M. van Schilfgaarde, T. Kendelwicz, M.D. Williams and W. E. Spicer, Phys. Rev. B33, 1146 (1986).

    Google Scholar 

  16. S.Q. Hong, CM. Comrie, S.W. Russell and J.W. Mayer, J. Appl. Phys. 70, 3655 (1991).

    Article  CAS  Google Scholar 

  17. U. Koester, K.P. Blennemann and A. Schulte, MRSSymp.Proc. 311 (Pittsburgh, PA: Mater. Res. Soc., 1993), p. 317.

    Google Scholar 

  18. L.H. Brixner and H.-Y. Chen, J. Electrochem. Soc. 130, 2435 (1983).

    Article  CAS  Google Scholar 

  19. L. Krusin-Elbaum and M.O. Aboelfotoh, Appl. Phys. Lett. 58, 1341 (1991).

    Article  CAS  Google Scholar 

  20. M.O. Aboelfotoh and H.M. Tawancy, J. Appl. Phys. 75, 2441 (1994).

    Article  CAS  Google Scholar 

  21. B. Steenberg, Arkiv foer Kemi, 12ANo. 26, 1 (1938).

    Google Scholar 

  22. See, for example: D.B. Holt, J. Mater. Sci. 23, 1131 (1988).

    Article  CAS  Google Scholar 

  23. P. Villars, Pearson’s handbook of crystallographic data for intermetallic phases (Materials Park, OH: ASM International, 2nd ed., 1991), p. 2884.

    Google Scholar 

  24. E.D. Marshall, B. Zhang, L.C. Wang, P.F. Jiao, W.X. Chen, T. Sawada, S.S. Lau, K.L. Kavanagh and T.F. Kuech, J. Appl. Phys. 62, 942 (1987).

    Article  CAS  Google Scholar 

  25. K. Tanahashi, H.J. Takata, A. Otuki and M. Murakami, J. Appl. Phys. 72, 4183 (1992).

    Article  CAS  Google Scholar 

  26. K. Sarma, R. Dalby, K. Rose, O. Aina, W. Katz and N. Lewis, J. Appl. Phys. 56, 2703 (1984).

    Article  CAS  Google Scholar 

  27. M. Heiblum, M.I. Nathan and C.A. Chang, Solid State Electron. 25, 185 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oktyabrsky, S., Aboelfotoh, M.O. & Narayan, J. Microstructure and chemistry of Cu-Ge ohmic contact layers to GaAs. J. Electron. Mater. 25, 1673–1683 (1996). https://doi.org/10.1007/s11664-996-0022-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-996-0022-3

Key words

Navigation