Skip to main content
Log in

Structural and Electrical Properties of Perovskite (Na0.5Bi0.5)0.99Sm0.01Ti0.9975O3 and Bismuth Layered Sr0.8Bi2.15Ta2O9 Ferroelectric Composites Synthesized by a Microwave Processing Technique

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(1−x)(Na0.5Bi0.5)0.99Sm0.01Ti0.9975O3–xSr0.8Bi2.15Ta2O9/(1−x)NBST-xSBT (where x = 0, 0.04, 0.08, 0.12, and 0.16) composites, comprising perovskite NBST and bismuth-layered SBT phases, were prepared by a solid-state reaction-assisted microwave processing technique. The structure of the composites was investigated by x-ray diffraction, which confirmed the coexistence of both phases in the synthesized composites. The microstructural study by field emission electron scanning electron microscopy showed a dense and inhomogeneous distribution of grains, which increased with the increase in SBT content. Detailed dielectric studies of the composite ceramics as a function of frequency (1 kHz to 1 MHz) and temperature showed a broadening of the permittivity peak near the transition temperature. A decrease in the transition temperature with an increase in SBT content was attributed to increased inhomogeneity and internal stress. Ferroelectric study revealed that both the coercive field and remnant polarization decreased with an increase in SBT content. The leakage current density of the composite system decreased with the increase in SBT content in the composites. A reduction in fatigue behavior was observed with the incorporation of SBT in the composites. Among the studied composites, the x = 0.08 system showed potential for use in ferroelectric nonvolatile random-access memory applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.A. Genenko, J. Glaum, M.J. Hoffmann, and K. Albe, Mater. Sci. Eng. B 192, 52 (2015).

    Article  CAS  Google Scholar 

  2. G. Zhu, Y. Gu, H. Yu, S. Fu, and Y. Jiang, J. Appl. Phys. 110, 024109 (2011).

    Article  Google Scholar 

  3. Y. Noguchi, H. Matsuo, Y. Kitanaka, and M. Miyayama, Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  4. A.K. Tagantsev, I. Stolichnov, E.L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).

    Article  CAS  Google Scholar 

  5. X. Wang, X. Liu, H. Xue, J. Yin, and J. Wu, J. Am. Ceram. Soc. 105, 2116 (2022).

    Article  CAS  Google Scholar 

  6. J. Shi, X. Liu, and W. Tian, J. Mater. Sci. 54, 5249 (2019).

    Article  CAS  Google Scholar 

  7. N. Thongmee, and R. Sumang, Integr. Ferroelectr. 223, 246 (2021).

    Article  Google Scholar 

  8. S. Swain, and P. Kumar, Curr. Appl. Phys. 16, 1105 (2016).

    Article  Google Scholar 

  9. S. Swain, and P. Kumar, J. Phys. Chem. Solids 98, 59 (2016).

    Article  CAS  Google Scholar 

  10. U. Chon, H.M. Jang, M.G. Kim, and C.H. Chang, Phys. Rev. Lett. 89, 8 (2002).

    Article  Google Scholar 

  11. W.D. Callister, Materials Science and Engineering: An Introduction, seventh (New York: Wiley, 2007).

    Google Scholar 

  12. N. Zhang, L. Li, and Z. Gui, Mater. Res. Bull. 36, 2553 (2001).

    Article  CAS  Google Scholar 

  13. O. Namsar, S. Pojprapai, A. Watcharapasorn, and S. Jiansirisomboon, J. Appl. Phys. 116, 164105 (2014).

    Article  Google Scholar 

  14. N. Thongmee, A. Watcharapasorn, M. Hoffman, and S. Jiansirisomboon, Ceram. Int. 38, S205 (2012).

    Article  CAS  Google Scholar 

  15. R. Sahu, R.R. Negi, B. Samanta, D. Nanda, and P. Kumar, J. Mater. Sci. Mater. Electron. 32, 17524 (2021).

    Article  CAS  Google Scholar 

  16. R. Sahu, and P. Kumar, Phase Transitions 93, 91 (2020).

    Article  CAS  Google Scholar 

  17. D.J. Shin, D.H. Lim, M. Saleem, and S.J. Jeong, J. Mater. Chem. C 9, 10101 (2021).

    Article  CAS  Google Scholar 

  18. K. Ramam, M. Lopez, and K. Chandramouli, J. Alloys Compd. 488, 211 (2009).

    Article  CAS  Google Scholar 

  19. A. Chamola, H. Singh, U.C. Naithani, S. Sharma, U. Prabhat, P. Devi, A. Malik, A. Srivastava, and R.K. Sharma, Adv. Mater. Lett. 2, 26 (2011).

    Article  CAS  Google Scholar 

  20. R.E. Newnham, Annu. Rev. Mater. Sci. 16, 47 (1986).

    Article  CAS  Google Scholar 

  21. R. A. Isla and S. Priya, Adv. Condens. Matter Phys. 2012, 1 (n.d.).

  22. J. Ryu, S.J. Priya, and K. Uchino, J. Electroceramics 8, 107 (2002).

    Article  CAS  Google Scholar 

  23. R.R. Negi, M. Chandrasekhar, and P. Kumar, Process. Appl. Ceram. 13, 164 (2019).

    Article  CAS  Google Scholar 

  24. R. Sahu, S. Swain, A. Mahapatra, R.R. Negi, B. Samanta, D. Nanda, and P. Kumar, Integr. Ferroelectr. 205, 177 (2020).

    Article  CAS  Google Scholar 

  25. D. Nanda, P. Kumar, B. Samanta, R. Sahu, and A. Singh, J. Electron. Mater. 48, 5039 (2019).

    Article  CAS  Google Scholar 

  26. P.P. Mohapatra, S. Pittal, and P. Dobbidi, J. Mater. Res. Technol. 9, 2992 (2020).

    Article  CAS  Google Scholar 

  27. O.M. Hemeda, A. Tawfik, D.M. Hemeda, and A.M. Elsheekh, Int. J. Mod. Phys. B 28, 1 (2014).

    Article  Google Scholar 

  28. A.K. Thomas, K. Abraham, J. Thomas, and K.V. Saban, J. Asian Ceram. Soc. 5, 56 (2017).

    Article  Google Scholar 

  29. G. R. Gajula, L. R. Buddiga, K. N. Chidambara Kumar, N. Vattikunta, and M. Dasari, Phys. B. Condens. Matter. 560, 1 (2019).

  30. T.R. Armstrong, and R.C. Buchanan, J. Am. Ceram. Soc. 73, 1268 (1990).

    Article  CAS  Google Scholar 

  31. C. Zhang, Q. Du, W. Li, D. Su, M. Shen, X. Qian, B. Li, H. Zhang, S. Jiang, and G. Zhang, J. Mater. 6, 618 (2020).

    Article  Google Scholar 

  32. Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, J. Am. Ceram. Soc. 90, 3485 (2007).

    Article  CAS  Google Scholar 

  33. J. Y. Law, V. Franco, L. M. Moreno-Ramírez, A. Conde, D. Y. Karpenkov, I. Radulov, K. P. Skokov, and O. Gutfleisch, Nat. Commun. 9, (2018).

  34. C. Rayssi, S. El Kossi, J. Dhahri, and K. Khirouni, RSC Adv. 8, 17139 (2018).

    Article  CAS  Google Scholar 

  35. B. Samanta, D. Nanda, P. Kumar, R. Sahu, S. Swain, and A. Mahapatra, Process. Appl. Ceram. 13, 387 (2019).

    Article  Google Scholar 

  36. S. Dutta, R.N.P. Choudhury, and P.K. Sinha, J. Mater. Sci. Mater. Electron. 14, 463 (2003).

    Article  CAS  Google Scholar 

  37. T. Zangina, J. Hassan, K.A. Matori, R.S. Azis, U. Ahmadu, and A. See, Results Phys. 6, 719 (2016).

    Article  Google Scholar 

  38. A. Chakir, B. Mehdaoui, A. Chari, L. Bih, and A. El Bouari, J. Mater. Sci. Mater. Electron. 33, 6150 (2022).

    Article  CAS  Google Scholar 

  39. F. Yan, G. Xing, R. Wang, and L. Li, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  40. W. Cai, C. Fu, W. Hu, G. Chen, and X. Deng, J. Alloys Compd. 554, 64 (2013).

    Article  CAS  Google Scholar 

  41. H.N. Al-Shareef, D. Dimos, and T.J. Boyle, Appl. Phys. Lett. 68, 690 (1996).

    Article  CAS  Google Scholar 

  42. Z. Luo, J. Glaum, T. Granzow, W. Jo, R. Dittmer, M. Hoffman, and J. Rodel, J. Am. Ceram. Soc. 94, 529 (2011).

    Article  CAS  Google Scholar 

  43. W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, and B.A. Tuttle, J. Am. Ceram. Soc. 79, 536 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rashmirekha Sahu acknowledges the Department of Science and Technology, New Delhi, for fellowship grants under the INSPIRE scheme with sanction no. DST/INSPIRE Fellowship/2016/IF160558.

Funding

Rashmirekha Sahu received research funding from the Department of Science and Technology, New Delhi, in the form of fellowship grants under the INSPIRE scheme with sanction no. DST/INSPIRE Fellowship/2016/IF160558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, R., Kumar, P. Structural and Electrical Properties of Perovskite (Na0.5Bi0.5)0.99Sm0.01Ti0.9975O3 and Bismuth Layered Sr0.8Bi2.15Ta2O9 Ferroelectric Composites Synthesized by a Microwave Processing Technique. J. Electron. Mater. 51, 4529–4540 (2022). https://doi.org/10.1007/s11664-022-09714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09714-4

Keywords

Navigation