Skip to main content
Log in

High Heating Efficiency of Magnetite Nanoparticles Synthesized with Citric Acid: Application for Hyperthermia Treatment

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report in this work the magnetic, morphological, and heating properties of magnetite nanoparticles (MNPs), which were synthesized by using different molar aqueous solutions of citric acid and the combustion method. When the content of citric acid (molarity) is increased from 0.5 M to 2 M, the average size of MNPs decreased from 7.3 ± 1 nm to 6.9 ± 1 nm according to the microscopy analysis. Also, the analysis by x-ray diffraction confirmed that all the MNPs presented a cubic phase. On the other hand, the magnetic measurements of the magnetite nanoparticles showed that they are superparamagnetic, since their coercivity values are in the range of 3–9 Oe. The MNPs were subjected to a magnetic field of 0.1 T while the frequency was varied from 87 kHz to 340 kHz. After this, the specific absorption rate (SAR) was calculated (this parameter is relevant because it is related to the heating efficiency of the nanoparticles). Consequently, the highest SAR value (179.8 W/g) was obtained at a frequency of 87 kHz and the lowest SAR value (114.9 W/g) was obtained at a frequency of 340 kHz. Furthermore, the SAR values were correlated with the Fe2+/Fe3+ ratio and found that the increase of this ratio enhances the heating efficiency of the magnetite nanoparticles. Also, the maximum heating temperature of the MNPs increases with the molarity of the citric acid (at the same frequency of applied magnetic field). In general, the highest values of heating temperature (61.2–66.4 °C) were produced by the MNPs subjected to a magnetic field of 87 Hz. We also evaluated the toxicity of the MNPs by obtaining their viability % values and those were in the range of 86–95%, which means that they are non-toxic and biocompatible. We finally achieved a proof of concept (in vitro experiments) and attached MNPs to colon cancer cells. Subsequently, these were subjected to a magnetic field of 0.1 T at a frequency of 87 kHz and could destroy the cancer cells (as confirmed by optical images). Hence, the results of this research demonstrate that the MNPs studied here are promising candidates for hyperthermia treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Allia, G. Barrera, and P. Tiberto, J. Magn. Magn. Mater. Nanoscale 12, 6360 (2020).

    Google Scholar 

  2. I. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, and C. Muralee Gopi, Magnetochemistry 5, 67 (2019).

    Article  Google Scholar 

  3. D. Chang, M. Lim, J. Goos, R. Qiao, Y. Ng, F. Mansfeld, M. Jackson, T. David, and M. Kavallaris, Front. Pharmacol. 9, 831 (2018).

    Article  Google Scholar 

  4. S. Mallesh, D. Narsimulu, and K. Kim, Phys. Lett. Sect. A Gen. At. Solid State Phys. 384, 1 (2020).

    Google Scholar 

  5. M. Horny, J. Gamby, V. Dupuis, and J. Siaugue, Nanomaterials 11, 1 (2021).

    Article  Google Scholar 

  6. Y. Gu, M. Yoshikiyo, A. Namai, D. Bonvin, A. Martinez, R. Piñol, P. Téllez, N. Silva, F. Ahrentorp, C. Johansson, J. Marco-Brualla, R. Moreno-Loshuertos, P. Fernández-Silva, Y. Cui, S. Ohkoshi, and A. Millán, RSC Adv. 10, 28786 (2020).

    Article  CAS  Google Scholar 

  7. M. Salimi, S. Sarkar, R. Saber, H. Delavari, A. Alizadeh, and H. Mulder, Cancer Nanotechnol. 9, 1 (2018).

    Article  Google Scholar 

  8. O. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo, P. De La Presa, L. El Mir, H. Bouzid, A. Yousif, and A. Al-Hajry, J. Alloys Compd. 607, 125 (2014).

    Article  CAS  Google Scholar 

  9. S. Munjal, N. Khare, B. Sivakumar, and D. Nairakthikumar, J. Magn. Magn. Mater. 477, 388 (2019).

    Article  CAS  Google Scholar 

  10. M. De Sousa, M. Fernández Van Raap, P. Rivas, P. Mendoza Zélis, P. Girardin, G. Pasquevich, J. Alessandrini, D. Muraca, and F. Sánchez, J. Phys. Chem. C 117, 5436 (2013).

    Article  Google Scholar 

  11. G. Niraula, J. Coaquira, G. Zoppellaro, B. Villar, F. Garcia, A. Bakuzis, J. Longo, M. Rodrigues, D. Muraca, A. Ayesh, F. Sinfrônio, A. De Menezes, G. Goya, and S. Sharma, ACS. Appl. Nanomater. 4, 3148 (2021).

    Article  CAS  Google Scholar 

  12. M. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C. Lucaciu, and O. Ersen, Int. J. Mol. Sci. 21, 1 (2020).

    Article  Google Scholar 

  13. A. Rajan, M. Sharma, and N. Sahu, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  14. S. Singh and N. Kapoor, Adv. Biol. 2014, 1 (2014).

    Google Scholar 

  15. A. Ruíz-Baltazar, R. Esparza, G. Rosas, and R. Pérez, J. Nanomater. 2015 (2015).

  16. B. Hafemann, K. Ghofrani, G. Gattner, H. Stieve, and N. Pallua, J. Mater. Sci. Mater. Med. 12, 437 (2001).

    Article  CAS  Google Scholar 

  17. P. van Wachem, M. van Luyn, L. Damink, P. Dijkstra, J. Feijen, and P. Nieuwenhuis, J. Biomed. Mater. Res. 28, 353 (1994).

    Article  Google Scholar 

  18. N. Jannah D. Onggoz In: J. Physics: Conference Series. 1245 (2019).

  19. M. Natu, J. Sardinha, I. Correia, and M. Gil, Biomed. Mater. 2, 241 (2007).

    Article  CAS  Google Scholar 

  20. M. Dheyab, A. Aziz, M. Jameel, O. Noqta, P. Khaniabadi, and B. Mehrdel, Sci. Rep. 10, 1 (2020).

    Article  Google Scholar 

  21. Z. Sohrabijam, A. Zamanian, M. Saidifar, and A. Nouri, Procedia Mater. Sci. 11, 282 (2015).

    Article  CAS  Google Scholar 

  22. O. Arriortua, M. Insausti, L. Lezama, I. Gil de Muro, E. Garaio, J. de la Fuente, R. Fratila, M. Morales, R. Costa, M. Eceiza, M. Sagartzazu-Aizpurua, and J. Aizpurua, Colloids Surf. B Biointerfaces165 (2018)

  23. I.I. Geneva, B. Cuzzo, T. Fazili, and W. Javaid, Open Forum Infect. Dis. 6 (2019)

  24. R. Fu, Y. Yan, C. Roberts, Z. Liu, and Y. Chen, Sci. Rep. 8, 1 (2018).

    Google Scholar 

  25. O. Lemine, K. Omri, L. El Mir, V. Velasco, P. Crespo, P. De La Presa, H. Bouzid, A. Youssif, and A. Hajry, Mater. Res. Soc. Symp. Proc. 1779, 7 (2015).

    Article  Google Scholar 

  26. C. Blanco-Andujar, D. Ortega, P. Southern, Q.A. Pankhurst, and N.T.K. Thanh, Nanoscale 7, 1768 (2015).

    Article  CAS  Google Scholar 

  27. M. Elisa, M.B. de Sousa, P.C. Fernandez van Raap, P.C. Rivas, P. Mendoza Zelis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, and F.H. Sanchez, J. Phys. Chem. 117, 5436 (2013).

    Google Scholar 

  28. Q. Ai, Z. Yuan, R. Huang, C. Yang, G. Jiang, J. Xiong, Z. Huang, and S. Yuan, J. Mater. Sci. 54, 4212 (2019).

    Article  CAS  Google Scholar 

  29. M. Amin, B. D’Cruz, M. Madkour, and E. Al-Hetlani, Microchim. Acta 186, 503 (2019).

    Article  CAS  Google Scholar 

  30. Z. Beji, Z.M. Sun, L. Smiri, F. Herbst, Mangeney, and S. Ammar, RSC Adv. 5, 65022 (2015)

  31. S. Munjal, N. Khare, B. Sivakumar, and D. Nair Sakthikumar, J. Magn. Magn. Mater. 477, 395 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Guanajuato for the partial financial support from the Grant DAIP/2021-59023. J. Oliva appreciates the financial support from the Investigadores por Mexico program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gomez-Solis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramirez, D., Oliva, J., Cordova-Fraga, T. et al. High Heating Efficiency of Magnetite Nanoparticles Synthesized with Citric Acid: Application for Hyperthermia Treatment. J. Electron. Mater. 51, 4425–4436 (2022). https://doi.org/10.1007/s11664-022-09678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09678-5

Keywords

Navigation