Skip to main content

Advertisement

Log in

Simultaneous Improvement of Electrical and Thermal Transport Properties of Titanium Oxide Ceramic Thermoelectric Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric materials can easily realize energy savings by converting untapped waste heat into electricity. Unfortunately, however, the coupling of the thermoelectric parameters limits the conversion efficiency. Herein, we fabricated titanium oxide ceramic thermoelectric materials using a simple one-step solid-state reaction between TiO2 and starch at high temperature, and improved the electrical and thermal transport properties simultaneously by adjusting the amount of starch during preparation. With increasing starch, the electrical conductivity and power factor increased and the thermal conductivity decreased significantly. The samples mixed with 7 wt% starch showed rather low thermal conductivity (less than 2.0 W m−1 K−1) and a dimensionless figure of merit (ZT) close to 0.14K at 973 K. When the samples were sintered in an argon atmosphere, the starch was carbonized in situ into carbon and provided a reducing atmosphere, leading to the appearance of oxygen vacancies in the lattice of titanium oxide. The oxygen vacancies increased with increasing starch in the mixture during preparation, which resulted not only in a narrower band gap of titanium oxide but also enhanced phonon scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  2. D.S. Patil, R.R. Arakerimath, and P.V. Walke, Renew. Sustain. Energy Rev. 95, 1 (2018).

    Article  Google Scholar 

  3. M.A. Zoui, S. Bentouba, J.G. Stocholm, and M. Bourouis, Energy 143, 3606 (2020).

    Google Scholar 

  4. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, and K. Kalantar-zadeh, Prog. Mater. Sci. 58, 1443 (2013).

    Article  CAS  Google Scholar 

  5. J.F. Zhang, P. Zhou, J.J. Liu, and J.G. Yu, Phys. Chem. Chem. Phys. 16, 20382 (2014).

    Article  CAS  Google Scholar 

  6. Y.C. Lai, H.J. Tsai, C.I. Hung, H. Fujishiro, T. Naito, and W.K. Hsu, Phys. Chem. Chem. Phys. 17, 8120 (2015).

    Article  CAS  Google Scholar 

  7. Q.Y. He, Q. Hao, G. Chen, B. Poudel, X.W. Wang, D.Z. Wang, and Z.F. Ren, Appl. Phys. Lett. 91, 052505 (2007).

    Article  Google Scholar 

  8. X.D. Liu, D. Kepaptsoglou, Z.H. Gao, A. Thomas, K. Maji, E. Guilmeau, F. Azough, Q.M. Ramasse, R. Freer, and A.C.S. Appl, Mater. Interfaces 13, 57326 (2021).

    Article  CAS  Google Scholar 

  9. G.Y. Ji, L.J. Chang, H.G. Ma, B.M. Liu, Q. Chen, Y. Wang, X.J. Li, J.N. Wang, Y.W. Zhang, and X.P. Jia, J. Alloys Compd. 850, 156623 (2021).

    Article  CAS  Google Scholar 

  10. A. Verchere, S. Pailhes, S. Le Floch, S. Cottrino, R. Debord, G. Fantozzi, S. Misra, C. Candolfi, B. Lenoir, S. Daniele, and S. Mishra, Phys. Chem. Chem. Phys. 22, 13008 (2020).

    Article  CAS  Google Scholar 

  11. S. Thebaud, C. Adessi, and G. Bouzerar, Phys. Rev. B 100, 195202 (2019).

    Article  CAS  Google Scholar 

  12. H. Lee, R.C. Seshadri, Z. Pala, and S. Sampath, J. Therm. Spray. Tech. 27, 968 (2018).

    Article  CAS  Google Scholar 

  13. Z.H. Yuan, Z.Z. Li, S.K. Xu, W.S. Ma, J.Z. Xu, and G.D. Tang, Ceram. Int. 43, 15454 (2017).

    Article  CAS  Google Scholar 

  14. F.M. Hossain, G.E. Murch, L. Sheppard, and J. Nowotny, Solid State Ion. 178, 319 (2007).

    Article  CAS  Google Scholar 

  15. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, and M. Mohamad, Renew. Sustain. Energy Rev. 30, 337 (2014).

    Article  Google Scholar 

  16. S.J. Pander, G. Joshi, S. Wang, S. Curtarolo, and R.M. Gaume, J. Electron. Mater. 45, 5526 (2016).

    Article  Google Scholar 

  17. L. Hao, Y. Kikuchi, H. Yoshida, Y. Jin, and Y. Lu, J. Alloys Compd. 722, 846 (2017).

    Article  CAS  Google Scholar 

  18. H.Q. Liu, H.G. Ma, T.C. Su, Y.W. Zhang, B. Sun, B.W. Liu, L.J. Kong, B.M. Liu, and X.P. Jia, J. Materiomics 3, 286 (2017).

    Article  Google Scholar 

  19. H.Q. Liu, H.A. Ma, F. Wang, B.W. Liu, B.M. Liu, J.X. Chen, and X.P. Jia, Ceram. Int. 44, 8043 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 21761027) and the Natural Science Foundation of Inner Mongolia (Grant 2020LH02006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Li, A., Xiao, S. et al. Simultaneous Improvement of Electrical and Thermal Transport Properties of Titanium Oxide Ceramic Thermoelectric Materials. J. Electron. Mater. 51, 3504–3509 (2022). https://doi.org/10.1007/s11664-022-09642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09642-3

Keywords

Navigation