Skip to main content
Log in

Low-Temperature Diffusion Behavior of Ti in Cu/Ti-Ti/Cu Bonding

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The integration of vertically stacked interconnects as promising technology with improved performance, reduced size, and low cost has been studied. Because of its performance and fine pitch pattern advantages, Cu is gaining importance over traditional solder materials. However, both the high bonding temperature requirement and the oxidation of Cu must be addressed. In this study, Cu bonding using a 12-nm Ti nanolayer as a metal passivation layer was studied as regards the effect of anti-oxidation of the Cu surface and solid diffusion between Ti and Cu. Ti rapidly oxidized upon exposure to air, and the diffusion of Ti and TiO2-x from the bonding interface to the Cu layer was observed, although some remained at the bonding interface. It was found that the diffusion of Cu into the Ti nanolayer was slower than the diffusion of Ti/TiO2-x into the Cu layer due to a higher activation energy. The bonding of Cu/Ti-Ti/Cu was performed at 200°C, and the average shear strength was 13.2 MPa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat, 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. IEEE 89, 602 (2001).

    Article  CAS  Google Scholar 

  2. T. Li, J. Hou, J. Yan, R. Liu, H. Yang, and Z. Sun, Chiplet heterogeneous integration technology—status and challenges. Electronics 9, 670 (2020).

    Article  Google Scholar 

  3. G. Parès, C. Karoui, A. Zaid, F. Dosseul, M. Feron, A. Attard, G. Klug, H. Luesebrink, K. Martinschitz, N. Launay, S. Belhenini, and G. Simon, Full integration of a 3D demonstrator with TSV first interposer, ultra thin die stacking and wafer level packaging. In: IEEE 63rd electronic components technology conference proceedings (2013), pp. 305–306

  4. H. Park, and S.E. Kim, Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding. IEEE Trans. Comp. Packag. Manuf. Tech. 10, 332 (2019).

    Article  Google Scholar 

  5. B. Wu, S. Zhang, F. Wang, and Z. Chen, Micro copper pillar interconnection using thermosonic flip chip bonding. J. Electron. Packag. 140, 044502 (2018).

    Article  Google Scholar 

  6. S. Choudhary, J.V.N. Sarma, S. Pande, S. Ababou-Girard, P. Turban, N. Lepine, and S. Gangopadhyay, Oxidation mechanism of thin Cu films: a gateway towards the formation of single oxide phase. AIP Adv. 8, 055114 (2018).

    Article  Google Scholar 

  7. S.L. Chua, J.M. Chan, S.C.K. Goh, and C.S. Tan, Cu–Cu bonding in ambient environment by Ar/N2 plasma surface activation and its characterization. IEEE Trans. Compon. Packag. Manuf. Tech. 9, 596 (2018).

    Article  Google Scholar 

  8. H. Park, H. Seo, Y. Kim, S. Park, and S.E. Kim, Low-temperature (260° C) solderless Cu–Cu bonding for fine-pitch 3-D packaging and heterogeneous integration. IEEE Trans. Compon. Packag. Manuf. Tech. 11, 565 (2021).

    Article  CAS  Google Scholar 

  9. S. Bonam, A.K. Panigrahi, C.H. Kumar, S.R.K. Vanjari, and S.G. Singh, Interface and reliability analysis of Au-passivated Cu–Cu fine-pitch thermocompression bonding for 3-D IC applications. IEEE Trans. Comp. Packag. Manuf. Tech. 9, 1227 (2019).

    Article  CAS  Google Scholar 

  10. Y.P. Huang, Y.S. Chien, R.N. Tzeng, and K.N. Chen, Demonstration and electrical performance of Cu–Cu bonding at 150 °C With Pd passivation. IEEE Trans. Electron Dev. 62, 2587 (2015).

    Article  CAS  Google Scholar 

  11. Y.P. Huang, Y.S. Chien, R.N. Tzeng, M.S. Shy, T.H. Lin, K.H. Chen, C.T. Chiu, J.C. Chiou, C.T. Chuang, W. Hwang, H.M. Tong, and K.N. Chen, Novel Cu-to-Cu bonding with Ti passivation at 180 in 3-D integration. IEEE Electron Dev. Lett. 34, 1551 (2013).

    Article  CAS  Google Scholar 

  12. A. K. Panigrahi, S. Bonam, T. Ghosh, S. R. K. Vanjari, and S. G. Singh, High quality fine-pitch Cu-Cu Wafer-on-Wafer bonding with optimized Ti passivation at 160℃. In: IEEE 66th ECTC, 1791-1796 (2016)

  13. A.K. Panigrahi, T. Ghosh, S.R.K. Vanjari, and S.G. Singh, Demonstration of sub 150 °C Cu-Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of Manganin alloy as an effective surface passivation layer. Mater. Lett. 194, 86 (2017).

    Article  CAS  Google Scholar 

  14. W. Yang, J. Zhou, X. Jiang, X. Ye, X. Xuan, C. Wu, and L. Luo, Cu-Cu low temperature bonding based on lead-free solder with graphene interlayer. Appl. Phys. Lett. 115, 122102 (2019).

    Article  Google Scholar 

  15. S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, Effect of annealing ambient on the self-formation mechanism of diffusion barrier layers used in Cu(Ti) interconnects. J. Electron. Matter. 36, 258 (2007).

    Article  CAS  Google Scholar 

  16. Y. Iijima, K. Hosono, and K. Hirano, Diffusion of titanium in copper. Metallurgical Trans. A 8A, 997 (1977).

    Article  CAS  Google Scholar 

  17. A. Kuper, H. Letaw Jr., L. Slifkin, E. Sonder, and C.T. Tomizuka, Self-diffusion in copper. Phys. Rev. 96, 1224 (1954).

    Article  CAS  Google Scholar 

  18. B.S. Bokstein, V.I. Vnukov, E.V. Golosov, M.I. Karpov, Y.R. Kolobov, D.A. Kolesnikov, V.P. Korzhov, and A.O. Rodin, Structure and diffusion processes in laminated composites of a Cu–Ti system. Russ. Phys. J. 52, 811 (2009).

    Article  CAS  Google Scholar 

  19. K.Y. Lim, Y.S. Lee, Y.D. Chung, I.W. Lyo, C.N. Whang, J.Y. Won, and H.J. Kang, Grain boundary diffusion of Cu in TiN film by X-ray photoelectron spectroscopy. Appl. Phys. A 70, 431 (2000).

    Article  CAS  Google Scholar 

  20. K.Y. Lim, Y.S. Lee, Y.D. Chung, K.M. Lee, C.N. Whang, B.S. Choi, J.Y. Won, and H.J. Kang, The study of Grain boundary diffusion effect in Tin/Cu by XPS. J. Kor. Vac. Soc. 7, 112–117 (1998).

    Google Scholar 

  21. K.C. Park, and K.B. Kim, Effect of annealing of titanium nitride on the diffusion barrier property in Cu metallization. J. Electrochem. Soc. 142, 3109 (1995).

    Article  CAS  Google Scholar 

  22. Y.S. Lee, K.Y. Lim, Y.D. Chung, C.N. Whang, J.J. Woo, and Y.P. Lee, Method for the study of grain boundary diffusion effects by Auger electron spectroscopy sputter depth profiling. J. Vac. Sci. Tech. A 15, 204 (1997).

    Google Scholar 

  23. W.F. Gale, and T.C. Totemeir, Smithells metals reference book, 8th end (Oxford: Elsevier, Butterworth-Heinemann, 2003).

    Google Scholar 

  24. S. Park, Y. Kim, and S.E. Kim, Evaluation of 12nm Ti layer for low temperature Cu-Cu bonding. J. Microelectron. Packag. Soc. 28, 9 (2021). (in Korean).

    Google Scholar 

  25. K. C. H. Kumar, I. Ansara, P. Wollants, L. Delaey, and Z. Metallkd, “Thermodynamic optimisation of the Cu-Ti system”, 87, 666-672 (1996) (Database for FactSage http://www.rccm.co.jp/factsage/gedb/cu-elem/cuti/cuti.html) Accessed 09 December 2021

Download references

Acknowledgments

This research was partly supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, HRD Program for Industrial Innovation) and Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MRF-2019M3D1A2104109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Eunkyung Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Kim, Y. & Kim, S.E. Low-Temperature Diffusion Behavior of Ti in Cu/Ti-Ti/Cu Bonding. J. Electron. Mater. 51, 2617–2623 (2022). https://doi.org/10.1007/s11664-022-09501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09501-1

Keywords

Navigation