Skip to main content
Log in

Effect of the Compliance Current on the Retention Time of Cu/HfO2-Based Memristive Devices

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Compliance current plays a very important role in the retention performance of memristive devices. Although it was established that low and high compliance currents lead to volatile and nonvolatile behavior, respectively, studying the influence of the intermediate compliance current as a method to control the retention has not been widely explored. This is an interesting feature because the memristive devices have captured the attention of the scientific community for the development of a broad spectrum of new applications beyond memory. In this work, the effect of the intermediate compliance current in forming-free Cu/HfO2-based memristive devices is investigated. Here we show the existence of an intermediate compliance current window between the volatile and nonvolatile operating regions wherein the device holds the retention for a short time in a stochastic mode. Furthermore, the variation in the retention time is evaluated with respect to different device electrical parameters including the charge, flux, run history, and ON-state resistance, as well as the switching time of the device. The results show that the retention time controlled by an intermediate compliance current exhibits substantial variation, and the cycle-to-cycle stochasticity in the retention time can be a representative quality parameter for the development of security-related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. A. Grossi, C. Zambelli, and P. Olivo, 3D Flash Memories (Berlin: Springer, 2016), p. 29.

    Google Scholar 

  2. M. Teimoori, A. Amirsoleimani, A. Ahmadi, and M. Ahmadi, IEEE Trans. Very Large Scale Integr. (VLSI)Syst. 26, 2608 (2018).

    Article  Google Scholar 

  3. J. Sung Hyun, K. Kuk-Hwan, and L. Wei, Nano Lett. 9, 870 (2009).

    Article  CAS  Google Scholar 

  4. T. Li, X. Bi, N. Jing, X. Liang, and L. Jiang, in Proceedings of the 54th Annual Design Automation (2017), p. 1.

  5. Y. Halawani, M. Abu Lebdeh, B. Mohammad, M. Al-Qutayri, and S. Al-Sarawi, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26, 2773 (2018).

    Article  Google Scholar 

  6. G. Papandroulidakis, I. Vourkas, A. Abusleme, G.C. Sirakoulis, and A. Rubio, IEEE Trans. Nanotechnol. 16, 491 (2017).

    Article  CAS  Google Scholar 

  7. Y. Yang, J. Mathew, S. Pontarelli, M. Ottavi, and D.K. Pradhan, IEEE Trans. Nanotechnol. 15, 94 (2016).

    Article  CAS  Google Scholar 

  8. N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, IEEE Trans. Nanotechnol. 15, 635 (2016).

    Article  CAS  Google Scholar 

  9. S. Wang, G. Subramanyam, W. Wang, E. Shin, C. Yakopcic, and T. Taha, Electron. Lett. 52, 1673 (2016).

    Article  CAS  Google Scholar 

  10. M. Prezioso, Y. Zhong, D. Gavrilov, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. Likharev, and D. Strukov, in IEEE International Symposium on Circuits and Systems (ISCAS) (2016), p. 177.

  11. C.J. O’Kelly, M. Abunahla, M. Abi Jaoude, D. Homouz, and B. Mohammad, J. Phys. Chem. C. 120, 18971 (2016).

    Article  CAS  Google Scholar 

  12. H. Rady, H. Hossam, M.S. Saied, and H. Mostafa, in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS) (2019), p. 231.

  13. N.A.B.N. Hashim, F.A.B. Hamid, J. Teo, and M.S.A. Hamid, in 2016 IEEE International Conference on Semiconductor Electronics (ICSE) (2016), p. 181.

  14. N.A.B.N. Hashim, J. Teo, M.S.A. Hamid, and F. Azlee Binti Hamid, in 2016 IEEE Student Conference on Research and Development (SCOReD) (2016), p. 1.

  15. A.A. Jugale, C.M. Bhoomika, B.T. Anjanakumari, and M.R. Ahmed, in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (2019), p. 185.

  16. Y. Gong, F. Qian, and L. Wang, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27, 2536 (2019).

    Article  Google Scholar 

  17. M. Uddin, M.B. Majumder, and G.S. Rose, IEEE Trans. Nanotechnol. 16, 396 (2017).

    Article  CAS  Google Scholar 

  18. H. Abunahla, B. Mohammad, L. Mahmoud, M. Darweesh, M. Alhawari, M.A. Jaoude, and G.W. Hitt, IEEE Sens. J. 18, 3198 (2018).

    Article  CAS  Google Scholar 

  19. H. Abunahla, M. Jaoude, C. O’Kelly, and B. Mohammad, Mater. Chem. Phys. 184, 72 (2016).

    Article  CAS  Google Scholar 

  20. N.S.M. Hadis, A.A. Manaf, and S.H. Herman, in IEEE International Circuits and Systems Symposium (ICSyS) (2015), pp. 36–39.

  21. S. Abdul Hadi, K. Humood, M. Abi Jaoude, H. Abunahla, H. Shehhi, and B. Mohammad, Sci. Rep. 9, 9983 (2019).

    Article  CAS  Google Scholar 

  22. I. Tzouvadaki, N. Madaboosi, R.R.G. Soares, V. Chu, J.P. Conde, G. De Micheli, and S. Carrara, in 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME) (2015), p. 17.

  23. S. Khandelwal, A. Bala, V. Gupta, M. Ottavi, E. Martinelli and A. Jabir, in IEEE EEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS) (2019), p. 58.

  24. S. Hu, Y. Liu, T. Chen, Q. Guo, Y. Li, X. Zhang, L.J. Deng, Q. Yu, Y. Yin, and S. Hosaka, IEEE Trans. Nanotechnol. 17, 61 (2018).

    Article  CAS  Google Scholar 

  25. Y. Wang, W. Xu, Y. Chen, F. Gao, X. Liu, L. Lu, Y. Li, D. Du, R. Wang, M. Shi, L. Zhou, J. Zhou, M. Zhang, X. Wan, X. Lian, and Y. Tong, in 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) (2019), p. 1.

  26. D.J.J. Loy, P.A. Dananjaya, X.L. Hong, D.P. Shum, and W.S. Lew, Sci. Rep. 8, 14774 (2018).

    Article  CAS  Google Scholar 

  27. J. Woo, D. Lee, E. Cha, S. Lee, S. Park, and H. Hwang, IEEE Electron Device Lett. 35, 60 (2014).

    Article  CAS  Google Scholar 

  28. S. Kim, S. Jung, M. Kim, Y. Chen, Y. Chang, K. Ryoo, S. Cho, J. Lee, and B. Park, Small 14, 1704062 (2018).

    Article  CAS  Google Scholar 

  29. Z. Liao, C. Hou, Q. Zhao, D. Wang, Y. Li, and D. Yu, Small 5, 2377 (2009).

    Article  CAS  Google Scholar 

  30. Y. Ting, J. Chen, C. Huang, T. Huang, C. Hsieh, and W. Wu, Small 14, 1703153 (2017).

    Article  CAS  Google Scholar 

  31. X. Yan, K. Wang, J. Zhao, Z. Zhou, H. Wang, J. Wang, L. Zhang, X. Li, Z. Xiao, Q. Zhao, Y. Pei, G. Wang, C. Qin, H. Li, J. Lou, Q. Liu, and P. Zhou, Small 15, 1900107 (2019).

    Article  CAS  Google Scholar 

  32. K. Humood, B. Mohammad, H. Abunahla, and A. Alazzam, IET Circuits Devices Syst. 14, 107 (2019).

    Article  Google Scholar 

  33. S. Saylan, M. Abi-Jaoude, K. Humood, F. Ravaux, H. Al-Shehhi, and B. Mohammad, Nanotechnology 31, 165202 (2020).

    Article  CAS  Google Scholar 

  34. S. Saylan, H. Aldosari, K. Humood, M. Abi Jaoude, F. Ravaux, and B. Mohammad, Sci. Rep. 10, 1 (2020).

    Article  CAS  Google Scholar 

  35. B. Mohammad, M. Jaoude, V. Kumar, D. Al Homouz, H. Nahla, M. Al-Qutayri, and N. Christoforou, Nanotechnol. Rev. 5, 311 (2016).

    Article  CAS  Google Scholar 

  36. H. Abunahla, and B. Mohammad, Memristor Technology: Synthesis and Modeling for Sensing and Security Applications (Cham: Springer, 2018).

    Book  Google Scholar 

  37. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).

    Article  CAS  Google Scholar 

  38. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  CAS  Google Scholar 

  39. C. Sun, S.M. Lu, F. Jin, W.Q. Mo, J.L. Song, and K.F. Dong, J. Electron. Mater. 48, 2992 (2019).

    Article  CAS  Google Scholar 

  40. W. Changhong, H. Wei, T. Yi, and Z. Rong, Sci. Rep. 6, 22970 (2016).

    Article  CAS  Google Scholar 

  41. M. Arita, A. Tsurumaki-Fukuchi, and Y. Takahashi, Memristor and Memristive Neural Networks (London: Intechopen, 2017).

    Google Scholar 

  42. D. Liu, H. Cheng, R. Peng, and Y. Yin, in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO) (2016), p. 651.

  43. Y. Chang, L. Feng, C. Huang, G. Wu, C. Chang, J. Wu, S. Wang, T. Chang, and C. Chang, in The 4th IEEE International NanoElectronics Conference (2011), p. 1.

  44. R. Jha and B. Long, in 2012 IEEE Computer Society Annual Symposium on VLSI (2012), p. 73.

  45. W. Kim, and S. Rhee, Microelectron. Eng. 87, 98 (2010).

    Article  CAS  Google Scholar 

  46. Z. Wang, M. Rao, R. Midya, S. Joshi, H. Jiang, P. Lin, W. Song, S. Asapu, Y. Zhuo, C. Li, H. Wu, Q. Xia, and J. Yang, Adv. Func. Mater. 28, 1704862 (2018).

    Article  CAS  Google Scholar 

  47. F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng. R 83, 1 (2014).

    Article  Google Scholar 

  48. S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, Adv. Funct. Mater. 25, 6306 (2015).

    Article  CAS  Google Scholar 

  49. S. Pi, M. Ghadiri-Sadrabadi, J. Bardin, and Q. Xia, Nat. Commun. 6, 7519 (2015).

    Article  CAS  Google Scholar 

  50. N. Fukuda, Y. Nishioka, and K. Suu, in 2014 Silicon Nanoelectronics Workshop (SNW) (2014), p. 1.

  51. M. Zidan, H. Fahmy, M. Hussain, and K. Salama, Microelectron. J. 44, 176 (2013).

    Article  Google Scholar 

  52. S. Cortese, M. Trapatseli, A. Khiat, and T. Prodromakis, in 2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) (2016), p. 1.

  53. J. Yoo, J. Woo, J. Song, and H. Hwang, AIP Adv. 5, 127221 (2015).

    Article  CAS  Google Scholar 

  54. A.K. Singh, S. Blonkowski, and M. Kogelschatz, J. Appl. Phys. 124, 014501 (2018).

    Article  CAS  Google Scholar 

  55. S. Blonkowski, and T. Cabout, J. Phys. D Appl. Phys. 48, 345101 (2015).

    Article  CAS  Google Scholar 

  56. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Commun. 3, 1 (2012).

    Google Scholar 

  57. K. Fujiwara, T. Nemoto, M. Rozenberg, Y. Nakamura, and H. Takagi, Jpn. J. Appl. Phys. 47, 6266 (2008).

    Article  CAS  Google Scholar 

  58. E. Miranda, A. Mehonic, J. Blasco, J. Suñé, and A.J. Kenyon, IEEE Trans. Nanotechnol. 14, 15 (2014).

    Article  CAS  Google Scholar 

  59. Y. Li, M. Zhang, S. Long, J. Teng, Q. Liu, H. Lv, E. Miranda, J. Suñé, and M. Liu, Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  60. A. Mehonic, A. Vrajitoarea, S. Cueff, S. Hudziak, and H. Howe, Sci. Rep. 3, 2708 (2013).

    Article  CAS  Google Scholar 

  61. X. Guo, C. Schindler, S. Menzel, and R. Waser, Appl. Phys. Lett. 91, 133513 (2007).

    Article  CAS  Google Scholar 

  62. S. Chae, J. Lee, S. Kim, S. Lee, S. Chang, C. Liu, B. Kahng, H. Shin, D. Kim, and C. Jung, Adv. Mater. 20, 1154 (2008).

    Article  CAS  Google Scholar 

  63. M. Lee, S. Han, S. Jeon, B. Park, B. Kang, S. Ahn, K. Kim, C. Lee, C. Kim, and I. Yoo, Nano Lett. 9, 1476 (2009).

    Article  CAS  Google Scholar 

  64. J. Lee, S. Lee, S. Chang, L. Gao, B. Kang, M. Lee, C. Kim, T. Noh, and B. Kahng, Phys. Rev. Lett. 105, 205701 (2010).

    Article  CAS  Google Scholar 

  65. Z. Wang, X. Li, H. Xu, W. Wang, H. Yu, X. Zhang, Y. Liu, and Y. Liu, J. Phys. D Appl. Phys. 43, 385105 (2010).

    Article  CAS  Google Scholar 

  66. H. Shima, F. Takano, H. Akinaga, Y. Tamai, I. Inoue, and H. Takagi, Appl. Phys. Lett. 91, 012901 (2007).

    Article  CAS  Google Scholar 

  67. I. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, Phys. Rev. B 77, 035105 (2008).

    Article  CAS  Google Scholar 

  68. S. Jo, and W. Lu, Nano Lett. 8, 392 (2008).

    Article  CAS  Google Scholar 

  69. S. Ahn, M. Lee, Y. Park, B. Kang, C. Lee, K. Kim, S. Seo, D. Suh, D. Kim, and J. Hur, Adv. Mater. 20, 924 (2008).

    Article  CAS  Google Scholar 

  70. J. Hu, W. Jackson, S. Ward, P. Stradins, H. Branz, and Q. Wang, MRS Online Proc. Libr. Arch. 762, A18.3 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the United Arab Emirates Space Agency, Space Missions Science and Technology Directorate, Project Reference K08-2016-001. The proposed project is in line with the United Arab Emirates Space Agency’s Space Science, Technology and Innovation (ST&I) Roadmap which aims at developing enabling technologies for space exploration that are intended to accomplish the objectives of the UAE Space Strategy. The authors also acknowledge the access to the electron microscopy suite through the KU-Research Laboratories, for conducting all electrical and material characterization studies, respectively. The authors acknowledge Dr. Anas Alazzam for providing access to the MEMS at KU for device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baker Mohammad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 576 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humood, K., Saylan, S., Mohammad, B. et al. Effect of the Compliance Current on the Retention Time of Cu/HfO2-Based Memristive Devices. Journal of Elec Materi 50, 4397–4406 (2021). https://doi.org/10.1007/s11664-021-08995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08995-5

Keywords

Navigation