Skip to main content
Log in

Optical Properties of Zinc Sulphide Thin Films Coated with Aqueous Organic Dye Extract for Solar and Optoelectronic Device Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Optical properties of ZnS thin films coated with organic dye extract on different Zn2+ concentrations from ZnSO4 are presented in this study. The effects of concentration and post-deposition annealing temperatures on the optical properties of the films were investigated. Aqueous dye extract-coated ZnS nanocrystals, were prepared by a simple and low-cost chemical bath deposition method. Results obtained revealed that optical properties of the films were modified by concentration and post-deposition annealing temperature. Increasing concentration reduced the transparency of the films. Annealing increased the transparency of the films except for films deposited with 0.1M concentration of ZnSO4. In general, the heat-treated layers were found to transmit better than the as-deposited layers. The analysis of energy band gap showed a reduction in band gap with increasing Zn2+ concentration of the as-deposited films. It also indicated that post-deposition annealing, increased energy band gap except for films deposited with 0.1M concentration of ZnSO4. The relationship between the energy band gap with both concentration and post-deposition annealing fit into the quadratic model with high R2 values. The range of values of 3.889–3.981eV recorded for the band gaps is within the range for application in diverse solar architecture and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.I. Owamah, M.I. Alfa, and A.O. Onokwai, Environ. Nanotechnol. Monit. Manag., 2020, 14, p 100347.

    Google Scholar 

  2. H.I. Owamah, H.I. Owamah, J. Mater. Cycles Waste Manag., 2020, 22(6), p 2019.

    Article  Google Scholar 

  3. A.O. Onokwai, H.I. Owamah, M.O. Ibiwoye, G.C. Ayuba, and O.A. Olayemi, ISH J. Hydraul. Eng., 2020, 9, p 1.

    Article  Google Scholar 

  4. P.U. Asogwa, S.C. Ezugwu, and F.I. Ezema, Superficies y Vacio, 2010, 23(1), p 18.

    CAS  Google Scholar 

  5. P.E. Agbo, P.A. Nwofe, and L.O. Odo, Chalcogenide Lett., 2017, 14(8), p 357.

    CAS  Google Scholar 

  6. A.G. Rojas-Hernandez, K.J. Mendoza-Pena, E. Troyo-Vega, C.G. Perez-Hernandez, S. Mungunia-Rodriguez, T. Mendivil-Reynoso, L.P. Ramirez-Rodriguez, R. Ochoa-Landin, M.E. Alvarez-Ramos, A. Deleon, and S.J. Castillo, Chalcogenide Lett., 2017, 14(1), p 25.

    CAS  Google Scholar 

  7. A.H.O. Al-khayatt, and M.D. Jaafer, J. Appl. Phys., 2014, 6(1), p 27.

    Google Scholar 

  8. J. Cruz, D.S. Cruz, M.C. Arenas-Arrocena, F.D.M. Flores, and S.A.M. Hernandez, Chalcogenide Lett., 2015, 12(5), p 277.

    Google Scholar 

  9. N.K. Allouche, T.B. Nasr, N.T. Kamoun, and C. Guasch, Mater. Chem. Phys., 2010, 123, p 620.

    Article  Google Scholar 

  10. O. Erken, M. Gunes, D. Ozaslan, and C. Gumus, Indian J. Appl. Phys., 2017, 55, p 471.

    Google Scholar 

  11. M.S. Shinde, P.B. Ahirrao, I.J. Patil, and R.S. Patil, Indian J. Pure Appl. Phys., 2011, 49, p 765.

    CAS  Google Scholar 

  12. G. Nabiyouni, R. Sahraei, M. Toghiany, M.H. Majles, and K. Hedayati, Rev. Adv. Mater. Sci., 2011, 27, p 52–57.

    CAS  Google Scholar 

  13. R. He, X.-F. Qian, J. Yin, H.-A. Xi, L.-J. Bian, and Z.-K. Zhu, Colloids Surf. A, 2003, 220, p 151.

    Article  CAS  Google Scholar 

  14. N. Tomczak, D. Janczewski, M. Han, and G.J. Vancso, Prog. Polym. Sci., 2009, 34, p 393.

    Article  CAS  Google Scholar 

  15. S.-Z. Kang, Y. Yang, Z. Xu, and J. Mu, J. Disper. Sci. Technol., 2008, 29, p 521.

    Article  CAS  Google Scholar 

  16. P. Verma, G.S. Manoj, and A.C. Pandey, Phys. B, 2010, 405, p 1253.

    Article  CAS  Google Scholar 

  17. A.E. Igweoko, M.Eng. Thesis submitted to Enugu State University of Science and Technology, Enugu, Nigeria (2018)

  18. P.E. Agbo, and P.A. Nwofe, Int. J. Thin Film Sci. Technol., 2015, 4(1), p 9.

    Google Scholar 

  19. R. Sanding, P.S. Gupta, and S. Gurdeep, J. Ovonic Res., 2010, 6(1), p 63.

    Google Scholar 

  20. N.K.Asare-Donkor. Ph.D. thesis submitted to the Department of Chemistry, College of Science Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (2013)

  21. V.D. Moreno-Reginoa, F.M. Castañeda-de-la-Hoyaa, C.G. Torres-Castanedob, J. Márquez-Marína, R. Castanedo-Péreza, G. Torres-Delgadoa, and O. Zelaya-Ángelba, Results Phys., 2019, 13, p 102238.

    Article  Google Scholar 

  22. A. Mahmood, N. Ahmed, Q. Raza, T.M. Khan, M. Mehmood, M.M. Hassan, and N. Mahmood, Phys. Scr., 2010, 82, p 065801.

    Article  Google Scholar 

  23. C. Augustine, M.N. Nnabuchi, F.N.C. Anyaegbunam, and A.N. Nwachukwu, Digest J. Nanomater. Biostruct., 2017, 12(2), p 523.

    Google Scholar 

  24. C. Augustine, M.N. Nnabuchi, F.N.C. Anyaegbunam, and C.U. Uwa, Chalcogenide Lett., 2017, 14(8), p 321.

    CAS  Google Scholar 

  25. B.J. Babu, A. Maldonado, S. Velumani, and R. Asomoza, Mater. Sci. Eng. B, 2010, 10, p 25.

    Google Scholar 

  26. G. Theophil Anand, L. John Kennedy, and J. Judith Vijaya, J. Alloys Compd., 2013, 581, p 558.

    Article  Google Scholar 

  27. D.E. Bode, Physics of Thin Films, Vol. 3. Academic Press, New York, 1966, p 123

    Google Scholar 

  28. C. Augustine, and M.N. Nnabuchi, J. Ovonic Res., 2017, 13(4), p 233.

    CAS  Google Scholar 

  29. P.E. Agbo, and M.N. Nnabuchi, Chalcogenide Lett., 2011, 8(4), p 273.

    CAS  Google Scholar 

  30. C. Augustine, and M.N. Nnabuchi, J. Non-Oxide Glasses, 2017, 9(3), p 85.

    Google Scholar 

  31. K.P. Tiwary, F. Ali, S.K. Choubey, R.K. Mishra, and K. Sharma, Optik, 2021, 227(3), p 166045.

    Article  CAS  Google Scholar 

  32. D.U. Onah, C.E. Okeke, E.I. Ugwu, and J.E. Ekpe, Int. J., 2015, 3(3), p 62.

    CAS  Google Scholar 

  33. P.E. Agbo, G.F. Ibeh, S.O. Okeke, and J.E. Epke, Commun. Appl. Sci., 2013, 1(1), p 38.

    Google Scholar 

  34. S. Srikanth, N. Suriyanarayanan, S. Prabahar, V. Balasubramanian, and D. Kathirvel, Adv. Sci. Res., 2011, 2, p 95.

    CAS  Google Scholar 

  35. B. Ismail, S. Mushtaq, and A. Khan, Chalcogenide Lett., 2014, 11(1), p 37.

    Google Scholar 

  36. M.N. Nnabuchi, M.N. Nnabuchi, Pac. J. Sci. Technol., 2005, 6(2), p 105.

    Google Scholar 

  37. M.N. Nnabuchi, M.N. Nnabuchi, Pac. J. Sci. Technol., 2006, 7(1), p 69.

    Google Scholar 

  38. A.R. Chikwenze. Ph.D Thesis, Department of Industrial Physics, Ebonyi State University, Abakaliki. 305 (2012)

  39. C. Usoh, C. Okujagu, I. Owate. Proceedings of the 1st African International Conference/Workshop on Applications of Nanotechnology to Energy, Health and Environment, UNN, 23–29 March 2014

  40. P.A. Ajibade, and A. Nqombolo, Chalcogenide Lett., 2016, 13(9), p 427.

    CAS  Google Scholar 

  41. M.S. Kim, K.G. Vim, J. Son, and J.-Y. Leem, Bull Korean Chem. Soc., 2012, 33(4), p 1235.

    Article  CAS  Google Scholar 

  42. A.L. Cai, and J.F. Muth, Mater. Res. Soc. Symp. Proc., 2003, 764, p 120.

    Article  Google Scholar 

  43. D.S. Dhawale, A.M. More, S.S.L. Atthe, K.Y.R. Ajpure, and C.D. Lokhande, Appl. Sci., 2008, 254, p 3269.

    CAS  Google Scholar 

  44. C.D. Lokhande, B.R. Sankapal, R.S. Mane, H.M. Pathan, M. Muller, M. Giersig, and V. Ganesan, Appl. Surf. Sci., 2002, 193, p 1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the anonymous reviewers for their thorough review. Though independently reviewed, both raised similar issues about the manuscript. This is indicative of depth and thoroughness in their reviews, which have now helped to improve the manuscript. The authors also appreciate the Academic Research and Entrepreneurship Development (A-RED) Initiative, Asaba, Delta State, Nigeria, for provision of current literature and helping to run the plagiarism test on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

UPO conceived the concept and developed the study framework and methodology. SCI, AEI, CCA and CA sourced for the data, interpreted results obtained and drafted the first manuscript. HIO supplied the literature for the study, undertook the English language editing and reformatting of figures. HIO and SCI handled the various revisions of the manuscript in line with comments from reviewers and the editor. All authors made comments on the revised manuscript. UPO and HIO handled the submission and correspondence activities.

Corresponding authors

Correspondence to Uche Paul Onochie or Hilary Ijeoma Owamah.

Ethics declarations

Conflict of interest

The authors have no conflict of interest with regards to the study and publication of the article emanating from it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onochie, U.P., Ikpeseni, S.C., Igweoko, A.E. et al. Optical Properties of Zinc Sulphide Thin Films Coated with Aqueous Organic Dye Extract for Solar and Optoelectronic Device Applications. J. Electron. Mater. 50, 2576–2583 (2021). https://doi.org/10.1007/s11664-021-08792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08792-0

Keywords

Navigation