Skip to main content
Log in

Concentration-Dependent Fluorescence and Judd–Ofelt Analysis of Trivalent-Praseodymium-Doped Alkali Fluoroborate Glass

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of different concentrations of Pr3+ ions on the optical properties of (70−x)B2O3 + 10BaO + 10K2O + 10ZnF2 + xPr6O11 (x = 0.02 mol.%, 0.03 mol.%, 0.05 mol.%, 0.1 mol.%, and 0.5 mol.%) glass prepared by the melt quenching technique have been studied. The structural and luminescence behavior of the prepared glasses were studied by x-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, optical absorption spectroscopy, and photoluminescence excitation and emission spectroscopy. The XRD spectrum confirmed the amorphous nature while the FTIR spectrum revealed the presence of different structural groups in the prepared glass samples. The optical absorption spectrum was used to determine important parameters such as the nephelauxetic ratio, bonding parameter, optical bandgap energy, and Urbach energy. The PL spectra of the prepared glasses showed four prominent peaks at wavelengths of 484 nm, 601 nm, 693 nm, and 725 nm, related to the 3P0 → 3H4, 1D2 → 3H4, 3P0 → 3F3, and 3P0 → 3F4 transitions, respectively. Furthermore, the Judd–Ofelt (JO) intensity parameters Ωλ (λ = 2, 4, 6) and other important spectroscopic parameters such as the transition probability (A), radiative lifetime (τR), and branching ratio (βR) were calculated to evaluate the radiative properties of Pr3+levels from the optical absorption spectrum. In the host matrix, the JO parameters followed the trend Ω2 > Ω4 > Ω6. The emission spectra suggested that the prepared glass samples are excellent orange–red light-emitting materials under excitation at 442 nm (3H4 → 3P2). Quenching of the fluorescence intensity with increase of the Pr3+ concentration was also observed. The emission spectrum was used to determine the Commission Internationale de I’Éclairage (CIE) 1931 color coordinates. The results suggested the suitability of the prepared materials for various orange–red light-emitting applications, mainly in display devices, lasers, and optical amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Suthanthirakumar, C. Basavapoornima, and K. Marimuthu, J. Lumin. 392, 187 (2017).

    Google Scholar 

  2. V.K. Rai, S.B. Rai, and D.K. Rai, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 302, 62 (2005).

    Google Scholar 

  3. D. Manzani, D. Pabœuf, S.J. Ribeiro, P. Goldner, and F. Bretenaker, Opt. Mater. 383, 35 (2013).

    Google Scholar 

  4. R.T. Karunakaran, K. Marimuthu, S.S. Babu, and S. Arumugam, Solid State Sci. 1882, 11 (2009).

    Google Scholar 

  5. A. Dehelean, S. Rada, I. Kacso, and E. Culea, J. Phys. Chem. Solids 1235, 74 (2013).

    Google Scholar 

  6. B.V.R. Chowdari and Z. Rong, Solid State Ion. 133, 78 (1995).

    Google Scholar 

  7. C.M. Reddy, G.R. Dillip, K. Mallikarjuna, S.Z.A. Ahamed, B.S. Reddy, and B.D.P. Raju, J. Lumin. 1368, 131 (2011).

    Google Scholar 

  8. S. Mahamuda, K. Swapna, A.S. Rao, T. Sasikala, and L.R. Moorthy, Phys. B Condens. Matter 36, 428 (2013).

    Google Scholar 

  9. D. Umamaheswari, B.C. Jamalaiah, T. Sasikala, T. Chengaiah, G. Kim, and L.R. Moorthy, J. Lumin. 1166, 132 (2012).

    Google Scholar 

  10. S. Gopi, S.K. Jose, A. George, N.V. Unnikrishnan, C. Joseph, and P.R. Biju, J. Mater. Sci. Mater. Electron. 674, 29 (2018).

    Google Scholar 

  11. Y.C. Ratnakaram, A. Balakrishna, D. Rajesh, and M. Seshadri, J. Mol. Struct. 141, 1028 (2012).

    Google Scholar 

  12. P.V. Reddy, C.L. Kanth, V.P. Kumar, N. Veeraiah, and P. Kistaiah, J. Non. Cryst. Solids 3752, 351 (2005).

    Google Scholar 

  13. Y. Dwivedi, A. Bahadur, and S.B. Rai, J. Non. Cryst. Solids 1650, 356 (2010).

    Google Scholar 

  14. G. Anjaiah, S.K.N. Rasool, and P. Kistaiah, J. Lumin. 110, 159 (2015).

    Google Scholar 

  15. Y. Dwivedi and S.B. Rai, Opt. Mater. 1472, 31 (2009).

    Google Scholar 

  16. M.V. Sasikumar, B.R. Reddy, S. Babu, A. Balakrishna, and Y.C. Ratnakaram, J. Taibah Univ. Sci. 593, 11 (2016).

    Google Scholar 

  17. Shunichi Kaneko, Hirokazu Masai, Go Okada, and N. Kawaguchi, J. Asian Ceram. Soc. 385, 5 (2017).

    Google Scholar 

  18. V. Hegde, C.S.D. Viswanath, N. Chauhan, K.K. Mahato, and S.D. Kamath, Opt. Mater. 268, 84 (2018).

    Google Scholar 

  19. E.K. Abdel-Khalek, E.A. Mohamed, A. Ratep, S.M. Salem, and I. Kashif, J. Non. Cryst. Solids 58, 441 (2016).

    Google Scholar 

  20. L.R. Jaroszewicz, A. Majchrowski, M.G. Brik, N. Alzayed, W. Kuznik, and I.V. Kityk, J. Alloys Compd. 220, 538 (2012).

    Google Scholar 

  21. Feng Zhang, Zhuanfang Bi, Anping Huang, and Zhisong Xiao, J. Lumin. 85, 160 (2015).

    Google Scholar 

  22. M. Rozanski, K. Wisniewski, J. Szatkowski, C. Koepke, and M. Środa, Opt. Mater. 548, 31 (2009).

    Google Scholar 

  23. P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Pop, and E. Culea, J. Mol. Struct. 924, 214 (2009).

    Article  CAS  Google Scholar 

  24. B. HariBabu and V.V. RaviKanthKumar, J. Lumin. 16, 169 (2016).

    Google Scholar 

  25. P. Krishnapuram, S.K. Jakka, C. Thummala, and R.M. Lalapeta, J. Mol. Struct. 170, 1028 (2012).

    Google Scholar 

  26. W.T. Carnall, P.R. Fields, and K. Rajnak, J. Chem. Phys. 4424, 49 (1968).

    Google Scholar 

  27. M.C. Chavan, P.V. Vaidya, N.R. Lokhande, and M.N. Ghoshal, Asian J. Chem. 2575, 22 (2010).

    Google Scholar 

  28. S.P. Sinha, Complexes of the Rare Earths, 1st ed. (Oxford: Pergamon, 1966).

    Google Scholar 

  29. V. Vidyadharan, S. Gopi, P.R. Mohan, V. Thomas, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, Opt. Mater. 62, 51 (2016).

    Google Scholar 

  30. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Oxford: Clarendon, 1979).

    Google Scholar 

  31. T.Y. Lim, H. Wagiran, R. Hussin, S. Hashim, and M.A. Saeed, Phys. B 63, 451 (2014).

    Google Scholar 

  32. N. Deopa, A.S. Rao, S. Mahamuda, M. Gupta, M. Jayasimhadri, and D. Haranath, J. Alloys Compd. 911, 708 (2017).

    Google Scholar 

  33. S. ArunKumar, K. VenkataKrishnaiah, and K. Marimuthu, Phys. B 88, 416 (2013).

    Google Scholar 

  34. R. Vijayakumar, K. Maheshvaran, V. Sudarsan, and K. Marimuthu, J. Lumin. 160, 154 (2014).

    Google Scholar 

  35. B.R. Judd, Phys. Rev. 127, 750 (1962).

    Article  CAS  Google Scholar 

  36. G.S. Ofelt, J. Chem. Phys. 37, 511 (2014).

    Article  Google Scholar 

  37. G. Jose, V. Thomas, G. Jose, P.I. Paulose, and N.V. Unnikrishnan, J. Non. Cryst. Solids 89, 319 (2003).

    Google Scholar 

  38. G. Lakshminarayana, K.M. Kaky, S.O. Baki, S. Ye, A. Lira, and I.V. Kityk, J. Alloys Compd. 769, 686 (2016).

    Google Scholar 

  39. M. ElOkr, M. Farouk, M. El-Sherbiny, M.A.K. El-Fayoumi, and M.G. Brik, J. Alloys Compd. 184, 490 (2010).

    Google Scholar 

  40. R.T. Génova, I.R. Martín, U.R. Rodríguez-Mendoza, F. Lahoz, A.D. Lozano-Gorrín, and P. Núñez, J. Alloys Compd. 167, 380 (2004).

    Google Scholar 

  41. C.K. Jayasankar and P. Babu, J. Alloys Compd. 369, 275 (1998).

    Google Scholar 

  42. K. Swapna, S. Mahamuda, A.S. Rao, T. Sasikala, P. Packiyaraj, and L.R. Moorthy, J. Lumin. 80, 156 (2014).

    Google Scholar 

  43. C.B.A. Devi, S. Mahamuda, K. Swapna, M. Venkateswarlu, A.S. Rao, and G.V. Prakash, J. Non. Cryst. Solids 345, 498 (2018).

    Google Scholar 

  44. P. Sourkova, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.L. Doualan, and R. Moncorge, J. Lumin. 1148, 129 (2009).

    Google Scholar 

  45. S. Babu, P. Rajput, and Y.C. Ratnakaran, J. Mater. Sci. 8037, 51 (2016).

    Google Scholar 

  46. P. Cheng, Y. Zhou, M. Zhou, X. Su, Z. Zhou, and G. Yang, Opt. Mater. 102, 73 (2017).

    Google Scholar 

  47. G.C. Ram, T. Narendrudu, S. Suresh, A.S. Kumar, M.V.S. Rao, and C. Tirupataiah, J. Non. Cryst. Solids 476, 471 (2017).

    Google Scholar 

  48. C.P. Reddy, V. Naresh, and R.T.R. Reddy, Mater. Today Proc. 4058, 3 (2016).

    Google Scholar 

  49. M.V. Kumar, K.R. Gopal, R.R. Reddy, G.V.L. Reddy, N.S. Hussain, and B.C. Jamalaiah, J. Non. Cryst. Solids 364, 20 (2013).

    Article  CAS  Google Scholar 

  50. S.H. Park, J. Heo, and H.S. Kim, J. Non. Cryst. Solids 31, 259 (1999).

    Google Scholar 

  51. B. Burtan-Gwizdala, M. Reben, J. Cisowski, R. Lisiecki, W. Ryba-Romanowski, and B. Jarzabek, Opt. Mater. (Amst). 231, 47 (2015).

    Google Scholar 

  52. W.E.K. Gibbs and J.L. Holdsworth, J. Non. Cryst. Solids 167, 344 (2004).

    Google Scholar 

  53. K. Thomas, D. Alexander, S. Sisira, L.A. Jacob, P.R. Biju, and N.V. Unnikrishnan, J. Lumin. 284, 211 (2019).

    Google Scholar 

  54. E. Sreeja, G. Subash, V. Vidyadharan, P.R. Mohan, C. Joseph, and N.V. Unnikrishnan, Powder Technol. 445, 323 (2018).

    Google Scholar 

  55. P.P. Pawar, S.R. Munishwar, and R.S. Gedam, J. Alloys Compd. 347, 660 (2016).

    Google Scholar 

  56. K.A. Bashar, G. Lakshminarayana, S.O. Baki, B.F.A. Mohammed, U. Caldiño, and A.N. Meza-Rocha, Opt. Mater. 558, 88 (2019).

    Google Scholar 

  57. V. Vidyadharan, R. Mohan, C. Joseph, N.V. Unnikrishnan, and P.R. Biju, Mater. Chem. Phys. 38, 170 (2016).

    Google Scholar 

  58. B. Han, B. Liu, J. Zhang, and Y. Dai, Optik 346, 179 (2019).

    Google Scholar 

  59. Z. He, C. Zhu, S. Huang, and W. Xinyu, Vacuum 269, 159 (2019).

    Google Scholar 

  60. S. Gopi, P.R. Mohan, E. Sreeja, N.V. Unnnikrishnan, C. Joseph, and P.R. Biju, J. Electron. Mater. 4300, 7 (2019).

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC, India and DST, India for financial assistance through the SAP-DRS [No. F.530/12/DRS/2009(SAP-1)] and DST-PURSE [Grant No. DST-PURSE(SR/S9/Z-23/2010/22(CG))] programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Biju.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryapriya, N., Gopi, S., Krishnapriya, T. et al. Concentration-Dependent Fluorescence and Judd–Ofelt Analysis of Trivalent-Praseodymium-Doped Alkali Fluoroborate Glass. J. Electron. Mater. 49, 3624–3633 (2020). https://doi.org/10.1007/s11664-020-08053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08053-6

Keywords

Navigation