Skip to main content
Log in

Synthesis and Thermoelectric Properties of Cu12−xNixSb4S13 Tetrahedrites

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni-doped tetrahedrites Cu12−xNixSb4S13 (x = 0.1–0.4) were prepared by mechanical alloying (MA) and sintered by hot pressing (HP). The tetrahedrite phase could be synthesized by MA without post-annealing, and was stable after HP without phase transition. As the Ni content increased, the lattice constant decreased from 1.0312 nm to 1.0246 nm, confirming that the Ni was successfully substituted for Cu sites. As the Ni content increased, the Seebeck coefficient increased but the electrical conductivity decreased because the carrier (hole) concentration decreased owing to the substitution of Ni2+ at the Cu+ site. The power factor of 1.0 mW m−1 K−2 was obtained at 723 K for the Ni-doped specimen with x = 0.1, and decreased with increasing Ni content. In addition, as the Ni content increased, the electronic thermal conductivity decreased, but the total thermal conductivity of the specimen with Ni content x = 0.2 showed the lowest value of 0.65–0.79 W m−1 K−1 at 323–723 K owing to the lowest lattice thermal conductivity of 0.38 W m−1 K−1 at 723 K. As a result, the dimensionless figure of merit ZT = 0.92 was obtained at 723 K for Cu11.8Ni0.2Sb4S13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Exp. 5, 1201 (2012).

    Article  Google Scholar 

  2. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  CAS  Google Scholar 

  3. T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  CAS  Google Scholar 

  4. Y. Bouyrie, C. Candolfi, S. Pailhès, M.M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).

    Article  CAS  Google Scholar 

  5. X. Lu, W. Lai, Y. Wang, and D.T. Morelli, Adv. Funct. Mater. 25, 3648 (2015).

    Article  Google Scholar 

  6. D.T. Morelli, E. Lara-Curzio, A.F. May, O. Delaire, M.A. McGuire, X. Lu, C.Y. Liu, and E.D. Case, J. Appl. Phys. 115, 193515 (2014).

    Article  Google Scholar 

  7. X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).

    Article  CAS  Google Scholar 

  8. L.L. Huang, J. Zhang, Z.M. Wang, X.G. Zhu, J.M. Li, C. Zhu, D. Li, C.J. Song, H.X. Xin, and X.Y. Qin, Materialia 3, 169 (2018).

    Article  Google Scholar 

  9. A.F. May, O. Delaire, J.L. Niedziela, E. Lara-Curzio, M.A. Susner, D.L. Abernathy, M. Kirkham, and M.A. McGuire, Phys. Rev. B 93, 064104 (2016).

    Article  Google Scholar 

  10. Y.Q. Yu, B.P. Zhang, Z.H. Ge, P.P. Shang, and Y.X. Chen, Mater. Chem. Phys. 131, 1 (2011).

    Article  Google Scholar 

  11. S.Y. Kim, S.G. Kwak, J.H. Pi, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1857 (2019).

    Article  CAS  Google Scholar 

  12. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  13. S. Tippireddy, R. Chetty, M.H. Naik, M. Jain, K. Chattopadhyay, and R.C. Mallik, J. Phys. Chem. C 122, 8735 (2018).

    Article  CAS  Google Scholar 

  14. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  15. F. Sun, J. Dong, S. Dey, Asfandiyar, C. Wu, Y. Pan, H. Tang, and J. Li, Sci. Chin. Mater. 61, 1209 (2018).

    Article  CAS  Google Scholar 

  16. T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).

    Article  CAS  Google Scholar 

  17. D.P. Weller, D.L. Stevens, G.E. Kunkel, A.M. Ochs, C.F. Holder, D.T. Morelli, and M.E. Anderson, Chem. Mater. 29, 1656 (2017).

    Article  CAS  Google Scholar 

  18. X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. Ren, Nano Lett. 10, 3373 (2010).

    Article  CAS  Google Scholar 

  19. H. Cailat, A. Borshchevsky, and J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  Google Scholar 

  20. B. Madaval and S.J. Hong, J. Electron. Mater. 45, 12 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, Industry and Energy (Grant No. 10083640), and by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (Grant No. 2019R1A6C1010047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Lee, GE. & Kim, IH. Synthesis and Thermoelectric Properties of Cu12−xNixSb4S13 Tetrahedrites. J. Electron. Mater. 49, 2775–2780 (2020). https://doi.org/10.1007/s11664-019-07768-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07768-5

Keywords

Navigation