Skip to main content
Log in

PbS Quantum Dots Based on Physically Unclonable Function for Ultra High-Density Key Generation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Secure data encryption depends on the one-way functions and copy protection relies on features that are hard to reproduce. Herein, we present the physically unclonable function (PUF) concept based on PbS quantum dots (QDS) for ultra high-density key generation. Compared with existing PUFs, the proposed QDs-based PUF may boost the key density by about an order of magnitude, and also has certain advantages in terms of uniqueness, randomness and spatial characteristics. The proposed PUF passes applicable National Institute of Standards and Technology randomness tests. The area/bit is 14.5 nm2 for PbS QDs-based PUF1, 54.76 nm2 for PbS QDs-based PUF2, respectively. Compared with optical PUF, it improves the key density about 9.6 times and 2.3 times, respectively. Further, PbS QDs-based PUF1 and PbS QDs-based PUF2 demonstrate the larger data spaces and the read data has better spatial characteristics and uniqueness. We anticipate the QDs-based PUF circuit would shed light on future research of circuit design and information security technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Beckmann, H. Manem, and N.C. Cady, IEEE Trans. Emerg. Top. Comput. 5, 3 (2017).

    Article  Google Scholar 

  2. M.R. Carro-Temboury, R. Arppe, T. Vosch, and T.J. Sørensen, Sci. Adv. 4, 1 (2018).

    Article  Google Scholar 

  3. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, Science 297, 5589 (2002).

    Article  Google Scholar 

  4. R. Arppe and T.J. Sorensen, Nat. Rev. Chem. 1, 4 (2017).

    Article  Google Scholar 

  5. A.F. Smith, P. Patton, and S.E. Skrabalak, Adv. Funct. Mater. 26, 9 (2016).

    Article  Google Scholar 

  6. Y. Zheng, C. Jiang, S.H. Ng, Y. Lu, F. Han, U. Bach, and J.J. Gooding, Adv. Mater. 28, 12 (2016).

    Article  Google Scholar 

  7. R. Horstmeyer, S. Assawaworrarit, U. Ruhrmair and C. Yang, in HOST Conference Proceedings (2015), pp. 157–162.

  8. L. Liu, H. Huang, and S. Hu, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 37, 8 (2018).

    Google Scholar 

  9. X. Lu, L. Hong, and K. Sengupt, IEEE J. Solid-State Circuits 53, 9 (2018).

    Article  Google Scholar 

  10. B.C. Grubel, B.T. Bosworth, M.R. Kossey, H. Sun, A.B. Cooper, M.A. Foster, and A.C. Foster, Opt. Express 25, 11 (2017).

    Article  Google Scholar 

  11. U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, IEEE Trans. Inf. Foren. Sec. 8, 11 (2013).

    Article  Google Scholar 

  12. M. Rostami, M. Majzoobi, F. Koushanfar, D.S. Wallach, and S. Devadas, IEEE Trans. Emerg. Top. Comput. 2, 1 (2014).

    Article  Google Scholar 

  13. A.P. Alivisatos, Science 271, 5251 (1996).

    Article  Google Scholar 

  14. J. Sun, F.T. Rabouw, X. Yang, X. Huang, X. Jing, S. Ye, and Q. Zhang, Adv. Funct. Mater. 27, 45 (2017).

    Google Scholar 

  15. L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, and M. Gao, Chem. Rev. 116, 18 (2016).

    Article  Google Scholar 

  16. T.E. Duncan, IEEE Trans. Inf. Theory. 54, 10 (2008).

    Article  Google Scholar 

  17. J. Roberts, I.E. Bagci, M.A.M. Zawawi, J. Sexton, N. Hulbert, Y.J. Noori, M.P. Young, C.S. Woodhead, M. Missous, M.A. Migliorato, U. Roedig, and R.J. Young, Sci. Rep. 5, 16456 (2015).

    Article  CAS  Google Scholar 

  18. H.J. Bae, S. Bae, C. Park, S. Han, J. Kim, L.N. Kim, K. Kim, S.H. Song, W. Park, and S. Kwon, Adv. Mater. 27, 12 (2015).

    Article  Google Scholar 

  19. X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature 437, 121 (2005).

    Article  CAS  Google Scholar 

  20. A.B. Alvarez, W. Zhao, and M. Alioto, IEEE J. Solid-State Circuits 51, 3 (2016).

    Article  Google Scholar 

  21. A. Alharbi, D. Armstrong, S. Alharbi, and D. Shahrjerdi, ACS Nano. 11, 12772 (2017).

    Article  CAS  Google Scholar 

  22. J. Kim, T. Ahmed, H. Nili, J. Yang, D.S. Jeong, P. Beckett, S. Sriram, D.C. Ranasinghe, and O. Kavehei, IEEE Trans. Inf. Foren. Sec. 13, 2 (2018).

    Article  Google Scholar 

  23. R. Liu, P. Chen, X. Peng, and S. Yu, IEEE Trans. Circuits Syst. I-Regul. Pap. 65, 10 (2018).

    Google Scholar 

  24. K. Yang, Q. Dong, D. Blaauw and D. Sylvester, in ISSCC Conference Proceedings (2017), pp. 146–148.

  25. J. Lee, D. Lee, Y. Lee, and Y. Lee, in ISSCC Conference Proceedings (2018), pp. 132–134.

  26. G. Uhlmann, T. Aipperspach, T. Kirihata, C. Kothandaraman, Y.Z. Li, C. Paone, B. Reed, N. Robson, J. Safran, D. Schmitt and S. Iyer, in ISSCC Conference Proceedings (2008), pp. 406–407.

  27. B. Karpinskyy, Y.K. Lee, Y. Choi, Y. Kim, M. Noh and S. Lee, in ISSCC Conference Proceedings (2016). pp. 158–160.

  28. J.Y. Li and M. Seok, IEEE J. Solid-State Circuits 51, 9 (2016).

    Article  Google Scholar 

  29. S. Satpathy, S.K. Mathew, V. Suresh, M.A. Anders, H. Kaul, A. Agarwal, S.K. Hsu, G. Chen, R.K. Krishnamurthy, and V.K. De, IEEE J. Solid-State Circuits 52, 4 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61871244, 61704094 and 61874078); the Zhejiang Provincial Natural Science Foundation of China (No. LY18F040002); the K. C. Wong Magna Fund in Ningbo University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Zhang or Pengjun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luan, Z., Zhang, X. et al. PbS Quantum Dots Based on Physically Unclonable Function for Ultra High-Density Key Generation. J. Electron. Mater. 48, 7603–7607 (2019). https://doi.org/10.1007/s11664-019-07660-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07660-2

Keywords

Navigation