Skip to main content

Advertisement

Log in

Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

N,F-TiO2 and SiO2 nanoparticles have been synthesized by a sol–gel method and grown on reduced graphene oxide by a solvothermal method at different molar ratios. The microstructure and morphology of the N,F-TiO2/SiO2/rGO nanocomposite were investigated by Fourier-transform infrared spectroscopy, x-ray diffraction analysis, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, and Brunauer–Emmett–Teller surface area (SBET) measurements. The synthesized nanocomposite was used for photocatalytic degradation of Methyl Red (MR) dye. Ultraviolet–visible (UV–Vis) spectrophotometry was used to determine the degree of dye degradation before and after contact with the nanocomposite, and the absorbance was measured at 518 nm. The results confirmed that the N,F-TiO2/SiO2/rGO nanocomposite degraded 95% of MR after 60 min under visible-light irradiation. Factors affecting its photocatalytic ability were investigated and optimized. The results showed that the highest degradation efficiency was observed when 1.5 mL silica sol was used to synthesize the nanocomposite. Finally, the mechanism of Methyl Red degradation was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Benkhaya, S. El Harfi, and A. El Harfi, Appl. J. Environ. Eng. Sci. 3, 311 (2017).

    Google Scholar 

  2. S. Arivoli and M. Hema, Int. J. Phys. Sci. 2, 10 (2007).

    Google Scholar 

  3. M.A. Mohammed, A. Shitu, and A. Ibrahim, Res. J. Chem. Sci. 4, 91 (2014).

    Google Scholar 

  4. C. Zhang, Z. Zhu, H. Zhang, and Z. Hu, J. Environ. Sci. 24, 1021 (2012).

    CAS  Google Scholar 

  5. Y. Wang, B. Gao, Q. Yue, and Y. Wang, J. Environ. Sci. 23, 1626 (2011).

    CAS  Google Scholar 

  6. A. Ayati, M. Niknam Shahrak, B. Tanhaei, and M. Sillanpää, Chemosphere 160, 30 (2016).

    CAS  Google Scholar 

  7. C. Sahoo, A.K. Gupta, and A. Pal, Desalination 181, 91 (2005).

    CAS  Google Scholar 

  8. M. Ghaedi, A. Najibi, H. Hossainian, A. Shokrollahi, and M. Soylak, Toxicol. Environ. Chem. 94, 40 (2012).

    CAS  Google Scholar 

  9. Y. Badr, M. Abd El-Wahed, and M. Mahmoud, J. Hazard. Mater. 154, 245 (2008).

    CAS  Google Scholar 

  10. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, and J.M. Herrmann, Appl. Catal. B 39, 75 (2002).

    CAS  Google Scholar 

  11. D. Sponza and M. Işik, Enzyme Microb. Technol. 31, 102 (2002).

    CAS  Google Scholar 

  12. P.V. Nidheesh, M. Zhou, and M.A. Oturan, Chemosphere 197, 210 (2018).

    CAS  Google Scholar 

  13. D. Georgiou, A. Aivazidis, J. Hatiras, and K. Gimouhopoulos, Water Res. 37, 2248 (2003).

    CAS  Google Scholar 

  14. S. Natarajan, H.C. Bajaj, and R.J. Tayade, J. Environ. Sci. 65, 201 (2018).

    Google Scholar 

  15. G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I.M. Banat, R. Merchant, and W.F. Smyth, Appl. Microbiol. Biotechnol. 56, 81 (2001).

    CAS  Google Scholar 

  16. W. Lu, T. Xu, Y. Wang, H. Hu, N. Li, X. Jiang, and W. Chen, Appl. Catal. B-Environ. 180, 20 (2016).

    CAS  Google Scholar 

  17. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, and S. Pourmasoud, Ultrason. Sonochem. 43, 120 (2018).

    CAS  Google Scholar 

  18. J. Madhavan, P. Maruthamuthu, S. Murugesan, and S. Anandan, Appl. Catal. B-Environ. 83, 8 (2008).

    CAS  Google Scholar 

  19. S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, and P. Schmuki, Adv. Mater. 20, 4135 (2008).

    CAS  Google Scholar 

  20. Y.H. Yu, Y.P. Chen, and Z. Cheng, Int. J. Hydrog. Energy 40, 15994 (2015).

    CAS  Google Scholar 

  21. X. Hao, Z. Jin, J. Xu, S. Min, and G. Lu, Superlattice Microstruct. 94, 237 (2016).

    CAS  Google Scholar 

  22. J. Zhang, Y. Kusumawati, and T. Pauporté, Electrochim. Acta 201, 125 (2016).

    CAS  Google Scholar 

  23. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, and L. Jiang, ACS Nano 5, 590 (2010).

    Google Scholar 

  24. F. Liu, X. Yan, X. Chen, L. Tian, Q. Xia, and X. Chen, Catal. Today 264, 243 (2016).

    CAS  Google Scholar 

  25. T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B 101, 382 (2011).

    CAS  Google Scholar 

  26. W. Fan, Q. Lai, Q. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).

    CAS  Google Scholar 

  27. K. Osako, K. Matsuzaki, T. Susaki, S. Ueda, G. Yin, A. Yamaguchi, H. Hosono, and M. Miyauchi, Chem. Catal. Chem. 10, 3666 (2018).

    CAS  Google Scholar 

  28. K.C. Nguyen, M.P. Ngoc, and M.V. Nguyen, Mater. Lett. 165, 247 (2016).

    CAS  Google Scholar 

  29. J. Yu, T. Ma, G. Liu, and B. Cheng, Dalton Trans. 40, 6635 (2011).

    CAS  Google Scholar 

  30. F. Wang and K. Zhang, Curr. Appl. Phys. 12, 346 (2012).

    Google Scholar 

  31. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008).

    CAS  Google Scholar 

  32. I.V. Lightcap, T.H. Kosel, and P.V. Kamat, Nano Lett. 10, 577 (2010).

    CAS  Google Scholar 

  33. G. Williams, B. Seger, and P.V. Kamat, ACS Nano 2, 1487 (2008).

    CAS  Google Scholar 

  34. B. Tang and G. Hu, Chem. Vap. Depos. 20, 14 (2014).

    CAS  Google Scholar 

  35. T. Bo, W. Zhengwei, W. Huang, L. Sen, M. Tingting, Y. Haogang, and L. Xufei, Nanoscale Res. Lett. 12, 527 (2017).

    Google Scholar 

  36. H.M. Yadav and J.S. Kim, J. Alloys Compd. 688, 123 (2016).

    CAS  Google Scholar 

  37. Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012).

    CAS  Google Scholar 

  38. Q. Xiang, J. Yu, and M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012).

    CAS  Google Scholar 

  39. A. Nikokavoura and C. Trapalis, Appl. Surf. Sci. 430, 18 (2018).

    CAS  Google Scholar 

  40. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie, Appl. Surf. Sci. 430, 53 (2018).

    CAS  Google Scholar 

  41. J. Cha, M. Cui, M. Jang, S.H. Cho, D.H. Moon, and J. Khim, Environ. Geochem. Health 33, 81 (2011).

    CAS  Google Scholar 

  42. L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).

    CAS  Google Scholar 

  43. H. Ijadpanah-Saravi, M. Zolfaghari, A. Khodadadi, and P. Drogui, Desalin. Water Treat. 57, 14647 (2016).

    CAS  Google Scholar 

  44. A. Jonidi Jafari, R. Rezaei Kalantary, A. Esrafili, and H. Arfaeinia, Process. Saf. Environ. 116, 377 (2018).

    Google Scholar 

  45. M. Riazian, J. Nanostruct. 4, 433 (2014).

    Google Scholar 

  46. J. Gao, W. Li, X. Zhao, L. Wang, and N. Pan, Text. Res. J. 89, 517 (2019).

    CAS  Google Scholar 

  47. S. Brunauer, P.H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).

    CAS  Google Scholar 

  48. C. Sahoo, A.K. Gupta, and A. Pal, Desalination 181, 91 (2005).

    CAS  Google Scholar 

  49. P.P. Hankare, R.P. Patil, A.V. Jadhav, K.M. Garadkar, and R. Sasikala, Appl. Catal. B-Environ. 107, 333 (2011).

    CAS  Google Scholar 

  50. T. Welderfael, O.P. Yadav, A.M. Taddesse, and J. Kaushal, Bull. Chem. Soc. Ethiopia 27, 221 (2013).

    CAS  Google Scholar 

  51. Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, and C.H. Bhosale, J. Mater. Sci.: Mater. Electron. 26, 8404 (2015).

    CAS  Google Scholar 

  52. B.M. Vinoda, M. Vinuth, Y.D. Bodke, and J. Manjanna, J. Environ. Anal. Toxicol. 5, 2161 (2015).

    Google Scholar 

  53. A.D. Vishwanath, S.S. Jadhav, N.M. Eknath, A.E. Athare, and N.H. Kolhe, Orient. J. Chem. 33, 104 (2017).

    CAS  Google Scholar 

  54. Y. Wan, J. Chen, J. Zhan, and Y. Ma, J. Environ. Chem. Eng. 6, 6079 (2018).

    CAS  Google Scholar 

  55. O.L. Omotunde, A.E. Okoronkwo, A.F. Aiyesanmi, and E. Gurgur, J. Photochem. Photobiol. A 365, 145 (2018).

    CAS  Google Scholar 

  56. S.M. Patil, S.P. Deshmukh, K.V. More, V.B. Shevale, S.B. Mullani, A.G. Dhodamani, and S.D. Delekar, Mater. Chem. Phys. 225, 247 (2019).

    CAS  Google Scholar 

Download references

Acknowledgment

The authors are highly grateful to the Laboratory Complex of Science and Research Branch, I.A.U. for valuable methodological support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Samadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadi, S., Khalili, E. & Allahgholi Ghasri, M.R. Degradation of Methyl Red under Visible Light Using N,F-TiO2/SiO2/rGO Nanocomposite. J. Electron. Mater. 48, 7836–7845 (2019). https://doi.org/10.1007/s11664-019-07585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07585-w

Keywords

Navigation