Skip to main content
Log in

Unusual Ferromagnetic to Paramagnetic Change and Bandgap Shift in ZnS:Cr Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the chemical synthesis of Cr-doped ZnS nanocrystallites without using any capping ligand/surfactant. An unusual increase in bandgap observed for Cr-doped samples was understood in terms of the Burstein–Moss effect. Additionally, 4A2(F) → 4T1(F) and 4A2(F) → 4T2(F) transitions in the absorption spectra confirmed the substitution of Cr3+ ions at the octahedrally coordinated interstitial sites. Photoluminescence study showed a large amount of Zn vacancies owing to the incorporation of Cr3+ ions which intensified the self-activated blue–green luminescence. Room-temperature magnetization showed FM ordering up to the 2% Cr doping, which gradually transformed into paramagnetic behavior at higher values and became more enhanced in the low-temperature range. Thus, in the present synthesis method, the FM order could only be observed up to the 2% Cr doping concentration. Also, the activation energy was observed to increase with the increase of Cr doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  2. H. Hu and W. Zhang, Opt. Mater. 28, 536 (2006).

    Article  CAS  Google Scholar 

  3. N.H. Bonadeo, J. Erland, D. Gammon, D. Park, D.S. Katzer, and D.G. Steel, Science 282, 1473 (1998).

    Article  CAS  Google Scholar 

  4. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, 22, 932 (2004).

  5. A.A. Bol, R.V. Beek, and A. Meijerink, Chem. Mater. 14, 1121 (2002).

    Article  CAS  Google Scholar 

  6. W.Q. Peng, S.C. Qu, G.W. Cong, X.Q. Zhang, and Z.G. Wang, J. Cryst. Growth 282, 179 (2005).

    Article  CAS  Google Scholar 

  7. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  CAS  Google Scholar 

  8. P.C. Patel, S. Ghosh, and P.C. Srivastava, J. Mater. Sci. 50, 7919 (2015).

    Article  CAS  Google Scholar 

  9. P.C. Patel, S. Ghosh, and P.C. Srivastava, Mater. Res. Bull. 81, 85 (2016).

    Article  CAS  Google Scholar 

  10. H. Saito, V. Zayets, S. Yamagata, and K. Ando, Phys. Rev. Lett. 90, 207202 (2003).

    Article  CAS  Google Scholar 

  11. G. Zhu, S. Zhang, Z. Xu, J. Ma, and X. Shen, J. Am. Chem. Soc. 133, 15605 (2011).

    Article  CAS  Google Scholar 

  12. A.A. Guzelian, U. Banin, A.V. Kadavanich, X. Peng, and A.P. Alivisatos, Appl. Phys. Lett. 69, 1432 (1996).

    Article  CAS  Google Scholar 

  13. A.D. Yoffe, Adv. Phys. 42, 173 (1993).

    Article  CAS  Google Scholar 

  14. F. Huang, B. Gilbert, H. Zhang, and J.F. Banfield, Phys. Rev. Lett. 92, 155501 (2004).

    Article  Google Scholar 

  15. B. Gilbert, F. Huang, H. Zhang, G.A. Waychunas, and J.F. Banfield, Science 305, 651 (2004).

    Article  CAS  Google Scholar 

  16. R.N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  CAS  Google Scholar 

  17. P. Yang, M. Lü, D. Xu, D. Yuan, C. Song, S. Liu, and X. Cheng, Opt. Mater. 24, 497 (2003).

    Article  CAS  Google Scholar 

  18. A.A. Bol, J. Ferwerda, J.A. Bergwerff, and A. Meijerink, J. Lumin. 99, 325 (2002).

    Article  CAS  Google Scholar 

  19. R. Rossetti, R. Hull, J.M. Gibson, and L.E. Brus, J. Chem. Phys. 82, 552 (1985).

    Article  CAS  Google Scholar 

  20. H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, and X.X. Zhang, Appl. Phys. Lett., 91 (2007).

  21. S.J. Xu, S.J. Chua, B. Liu, L.M. Gan, C.H. Chew, and G.Q. Xu, Appl. Phys. Lett. 73, 478 (1998).

    Article  CAS  Google Scholar 

  22. Y. Li, C. Cao, and Z. Chen, Chem. Phys. Lett. 517, 55 (2011).

    Article  CAS  Google Scholar 

  23. S. Sugano and Y. Tanabe, J. Phys. Soc. Jap. 13, 880 (1958).

    Article  CAS  Google Scholar 

  24. T. Droubay, S.M. Heald, V. Shutthanandan, S. Thevuthasan, S.A. Chambers, and J. Osterwalder, J. Appl. Phys. 97, 046103 (2005).

    Article  Google Scholar 

  25. Y. Zhang, G. Feng, S. Dai, S. Ning, and S. Zhou, Phys. Status Solidi B 253, 1133 (2016).

    Article  CAS  Google Scholar 

  26. D.A. Reddy, G. Murali, B. Poornaprakash, R.P. Vijayalakshmi, and B.K. Reddy, Appl. Surf. Sci. 258, 5206 (2012).

    Article  CAS  Google Scholar 

  27. P.C. Patel, N. Srivastava, and P.C. Srivastava, J. Mater. Sci. Mater. Electron. 24, 4098 (2013).

    Article  CAS  Google Scholar 

  28. Q. Hou, K. Chen, H. Zhang, Y. Li, H. Liu, X. Dong, Y. Huang, and Q. Li, J. Phys. Conf. Ser., 430 (2013).

  29. W. Cheng and X. Ma, J. Phys Conf. Ser. 152, 012039 (2009).

    Article  Google Scholar 

  30. P.C. Patel and P.C. Srivastava, J. Mater. Sci. 49, 6012 (2014).

    Article  CAS  Google Scholar 

  31. X. Zeng, J. Zhang, and F. Huang, J. Appl. Phys. 111, 123525 (2012).

    Article  Google Scholar 

  32. B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, and L.D. Zhang, Appl. Phys. Lett. 82, 4791 (2003).

    Article  CAS  Google Scholar 

  33. J. Wu, W. Walukiewicz, S.X. Li, R. Armitage, J.C. Ho, E.R. Weber, E.E. Haller, H. Lu, W.J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett. 84, 2805 (2004).

    Article  CAS  Google Scholar 

  34. K. Sato, P.H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovský, J. Phys. Cond. Matter 16, S5491 (2004).

    Article  CAS  Google Scholar 

  35. S.R. Ramanan, and D. Ganguli, J. Non Cryst. Solids 212, 299 (1997).

    Article  CAS  Google Scholar 

  36. D.A. Donatti, A.I. Ruiz, F.G.D. Moraes, and D.R. Vollet, J. Sol–Gel. Sci. Technol. 28, 31 (2003).

    Article  CAS  Google Scholar 

  37. S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, and Y.D. Choi, Mater. Lett. 58, 342 (2004).

    Article  CAS  Google Scholar 

  38. W.Q. Peng, G.W. Cong, S.C. Qu, and Z.G. Wang, Nanotechnology 16, 1469 (2005).

    Article  CAS  Google Scholar 

  39. C. Corrado, Y. Jiang, F. Oba, M. Kozina, F. Bridges, and J.H. Zhang, J. Phys. Chem. A 113, 3830 (2009).

    Article  CAS  Google Scholar 

  40. W. Sang, Y. Qian, J. Min, D. Li, L. Wang, W. Shi, and L. Yinfeng, Solid State Commun. 121, 475 (2002).

    Article  CAS  Google Scholar 

  41. V. Ramasamy, K. Praba, and G. Murugadoss, Spectrochim. Acta Part A, 96, 963 (2012).

  42. A.A. Bol and A. Meijerink, Phys. Rev. B. 58, R15997 (1998).

    Article  CAS  Google Scholar 

  43. X. Wang, J. Shi, Z. Feng, M. Li, and C. Li, Phys. Chem. Chem. Phys. 13, 4715 (2011).

    Article  CAS  Google Scholar 

  44. Q.J. Feng, D.Z. Shen, J.Y. Zhang, Y.M. Lu, Y.C. Liu, and X.W. Fan, Mater. Chem. Phys. 96, 158 (2006).

    Article  CAS  Google Scholar 

  45. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Adv. Funct. Mater. 12, 323 (2002).

    Article  CAS  Google Scholar 

  46. P.H. Borse, N. Deshmukh, R.F. Shinde, S. Date, and S.K. Kulkarni, J. Mater. Sci. 34, 6087 (1999).

    Article  CAS  Google Scholar 

  47. B.S.R. Devi, R. Raveendran, and A.V. Vaidyan, Pramana J. Phys. 68, 679 (2007).

    Article  CAS  Google Scholar 

  48. S. Ganguly, S. Das, and S.G. Dastidar, Open Science Repository Chemistry, e70081948 (2013).

  49. C.W. Zhang, S.S. Yan, P.J. Wang, and Z. Zhang, Chem. Phys. Lett. 496, 46 (2010).

    Article  CAS  Google Scholar 

  50. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.N.R. Rao, Phys. Rev. B 74, 161306 (2006).

    Article  Google Scholar 

  51. H. Bi, S. Li, Y. Zhang, and Y. Du, J. Magn. Magn. Mater. 277, 363 (2004).

    Article  CAS  Google Scholar 

  52. A. Sundaresan and C.N.R. Rao, Nano Today 4, 96 (2009).

    Article  CAS  Google Scholar 

  53. S.S. Starchikov, I.S. Lyubutin, C.R. Lin, Y.T. Tseng, K.O. Funtov, Y.L. Ogarkova, T.V. Dmitrieva, and A.G. Ivanova, Phys. Chem. Chem. Phys. 17, 15829 (2015).

    Article  CAS  Google Scholar 

  54. U. Sivan, O. Entin-Wohlman, and Y. Imry, Phys. Rev. Lett. 60, 1566 (1988).

    Article  CAS  Google Scholar 

  55. H. Kamimura, A. Kurobe, and T. Takemori, Physica B, 117B & 118B, 652 (1983).

  56. J. Han, M. Shen, and W. Cao, Appl. Phys. Lett. 82, 67 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Physics, Banaras Hindu University, Varanasi, India, for XRD, SEM, TEM and PL measurements, and Dr. Alok Banerjee, UGC, DAE Consortium, Indore, India, for providing M-H and M-T measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P.C., Ghosh, S. & Srivastava, P.C. Unusual Ferromagnetic to Paramagnetic Change and Bandgap Shift in ZnS:Cr Nanoparticles. J. Electron. Mater. 48, 7031–7039 (2019). https://doi.org/10.1007/s11664-019-07507-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07507-w

Keywords

Navigation