Skip to main content
Log in

Fabrication of Sensitive and Selective Ammonia Gas Sensors Based on Pyrrole Interfacial Polymerization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we used polypyrrole (PPy) films prepared by chemical interfacial polymerization at the interface of hexane/water, as sensing layers in ammonia gas sensors. Anhydrous ferric chloride (FeCl3) was used as an oxidant and p-toluenesulfonic acid as a dopant. The polypyrrole films were grinded and dispersed in methanol and then deposited, via drop-casting, onto interdigitated electrodes screen printed on ceramic substrates. The prepared PPy was characterized by four-probe method, Fourier transform infrared spectroscopy, x-ray diffraction and scanning electron microscopy. Analyses confirmed the formation of PPy with quasi-spherical nanoparticles morphology, suitable for gas sensing applications. Design of experiments approach was used in order to investigate the effect of polymerization parameters (monomer and dopant concentration) on sensor sensitivity towards acetone, ethanol, chloroform, methanol, dichloromethane, toluene and ammonia vapors in the range of 100–4000 ppm at room temperature and 20% relative humidity. All sensors showed high selectivity and good sensitivity towards ammonia. Under optimal conditions, the sensitivity reached 31% at 100 ppm with a response time of 55 s, and a recovery time of 640 s, while the sensitivity towards all other analytes up to 4000 ppm was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Setka, J. Drbohlavova, and J. Hubalek, Sensors 17, 562 (2017).

    Article  Google Scholar 

  2. S. Koul, R. Chandra, and S.K. Dhawan, Sens. Actuators, B 75, 151 (2001).

    Article  Google Scholar 

  3. P.P. Sengupta, S. Barik, and B. Adhikari, Mater. Manuf. Process. 21, 263 (2006).

    Article  Google Scholar 

  4. M.R. Cavallari, J.E.E. Izquierdo, G.S. Braga, E.A.T. Dirani, M.A. Pereira-da-silva, E.F.G. Rodriguez, and F.J. Fonseca, Sensors 15, 9592 (2015).

    Article  Google Scholar 

  5. J.B. Chang, V. Liu, V. Subramanian, K. Sivula, C. Luscomb, A. Murphy, J. Liu, and M.J. Frechet, J. Appl. Phys. 100, 014506 (2006).

    Article  Google Scholar 

  6. E. Ruckenstein and J.H. Chen, Polymer 32, 1230 (1991).

    Article  Google Scholar 

  7. M. Joulazadeh and A.H. Navarchian, Synth. Met. 210, 404 (2015).

    Article  Google Scholar 

  8. S.C. Hernandez, D. Chaudhuri, W. Chen, N.V. Myung, and A. Mulchandani, Electroanalysis 19, 2125 (2007).

    Article  Google Scholar 

  9. L. Geng and S.H. Wu, Mater. Res. Bull. 48, 4339 (2013).

    Article  Google Scholar 

  10. O.S. Kwon, J.Y. Hong, S.J. Park, Y. Jang, and J. Jang, J. Phys. Chem. C 114, 18874 (2010).

    Article  Google Scholar 

  11. N. Chartuprayoon, C.M. Hangarter, Y. Rheem, H. Jung, and N.V. Myung, J. Phys. Chem. C 114, 11103 (2010).

    Article  Google Scholar 

  12. O.S. Kwon, S.J. Park, H. Yoon, and J. Jang, Chem. Commun. 48, 10526 (2012).

    Article  Google Scholar 

  13. M. Xue, F. Li, D. Chen, Z. Yang, X. Wang, and J. Ji, Adv. Mater. 28, 8265 (2016).

    Article  Google Scholar 

  14. X. Yang, L. Li, and Y. Zhao, Synth. Met. 160, 1822 (2010).

    Article  Google Scholar 

  15. C. Xiang, D. Jiang, Y. Zou, H. Chu, S. Qiu, H. Zhang, F. Xu, L. Sun, and L. Zheng, Ceram. Int. 41, 6432 (2015).

    Article  Google Scholar 

  16. Y. Yan, M. Zhang, ChH Moon, HCh Su, N.V. Myung, and E.D. Haberer, Nanotechnology 27, 325502 (2016).

    Article  Google Scholar 

  17. M. Brie, R. Turcu, C. Neamtu, and S. Pruneanu, Sens. Actuators, B 37, 119 (1996).

    Article  Google Scholar 

  18. P. Liu, Sh Wu, Y. Zhang, H. Zhang, and X. Qin, Nanomaterials 6, 121 (2016).

    Article  Google Scholar 

  19. J. Liu and M. Wan, J. Mater. Chem 11, 404 (2001).

    Article  Google Scholar 

  20. X. Li, D. Fang, Y. Cao, Z. Luo, M. Jiang, W. Xu, and Ch Xiong, J. Mater. Sci. 51, 9526 (2016).

    Article  Google Scholar 

  21. J. Lei, Z. Li, X. Lu, W. Wang, X. Bian, T. Zheng, Y. Xue, and C. Wang, J. Mater. Sci. 364, 555 (2011).

    Google Scholar 

  22. P. Xu, X. Han, Ch Wang, D. Zhou, Z. Lv, A. Wen, X. Wang, and B. Zhang, J. Phys. Chem. B 112, 10443 (2008).

    Article  Google Scholar 

  23. Z. Yin, W. Fan, Y. Ding, J. Li, L. Guan, and Q. Zheng, ACS Sustain. Chem. Eng. 3, 507 (2015).

    Article  Google Scholar 

  24. P. Dallas, D. Niarchos, D. Vrbanic, N. Boukos, X. Bian, S. Pejovnik, C.H. Trapalis, and D. Petridis, Polymer 48, 2007 (2007).

    Article  Google Scholar 

  25. S. Sharma, Ch Nirkhe, S. Pethkar, and A.A. Athawale, Sens. Actuators, B 85, 131 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Masri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masri, K., Kalaleh, HA. & Alhassan, A. Fabrication of Sensitive and Selective Ammonia Gas Sensors Based on Pyrrole Interfacial Polymerization. J. Electron. Mater. 48, 5967–5974 (2019). https://doi.org/10.1007/s11664-019-07338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07338-9

Keywords

Navigation