Skip to main content

Advertisement

Log in

High-Performance Li-CO2 Batteries with α-MnO2/CNT Cathodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A rechargeable Li-CO2 battery has been considered to be a promising battery system due to its high-energy density and the utilization of carbon dioxide (CO2). However, the high overvoltage caused by the discharge product Li2CO3 hinders the development of Li-CO2 batteries. In this work, α-MnO2 nanowires obtained via a redox reaction have been employed as the cathode catalyst in the Li-CO2 battery, which can provide sufficient catalytic sites for CO2 evolution and tune the cathode structure for the uniform distribution of Li2CO3 and C on the cathode. The Li-CO2 battery with an MnO2/carbon nanotube (CNT) cathode exhibits significantly reduced overpotential, and could be operated for 50 cycles with a fixed capacity of 1000 mAh g−1 and 6 cycles of full discharge–charge tests at a current density of 100 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  Google Scholar 

  2. M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  3. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon, Nat. Mater. 11, 19 (2011).

    Article  Google Scholar 

  4. Z.Q. Peng, S.A. Freunberger, Y.H. Chen, and P.G. Bruce, Science 337, 563 (2012).

    Article  Google Scholar 

  5. Y.Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, S. Park, J.G. Zhang, W. Yong, and J. Liu, Adv. Funct. Mater. 23, 978 (2013).

    Google Scholar 

  6. Y.C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, and Y. Shao-Horn, Energy Environ. Sci. 6, 750 (2013).

    Article  Google Scholar 

  7. A.C. Luntz and B.D. McCloskey, Chem. Rev. 114, 11721 (2014).

    Article  Google Scholar 

  8. Z. Ma, X.X. Yuan, L. Li, Z.F. Ma, D.P. Wilkinson, L. Zhang, and J.J. Zhang, Energy Environ. Sci. 8, 2144 (2015).

    Article  Google Scholar 

  9. Z.Y. Wen, C. Shen, and Y. Lu, ChemPlusChem 80, 270 (2015).

    Article  Google Scholar 

  10. L. Grande, E. Paillard, J. Hassoun, J.B. Park, Y.J. Lee, Y.K. Sun, S. Passerini, and B. Scrosati, Adv. Mater. 27, 784 (2015).

    Article  Google Scholar 

  11. N.N. Feng, P. He, and H.S. Zhou, Adv. Energy Mater. 6, 1502303 (2016).

    Article  Google Scholar 

  12. D. Aurbach, B.D. McCloskey, L.F. Nazar, and P.G. Bruce, Nat. Energy 1, 16128 (2016).

    Article  Google Scholar 

  13. K. Takechi, T. Shiga, and T. Asaoka, Chem. Commun. 47, 3463 (2011).

    Article  Google Scholar 

  14. S.R. Gowda, A. Brunet, G.M. Wallraff, and B.D. McCloskey, J. Phys. Chem. Lett. 4, 267 (2013).

    Article  Google Scholar 

  15. H.K. Lim, H.D. Lim, K.Y. Park, D.H. Seo, H. Gwon, J. Hong, W.A. Goddard, H. Kim, and K. Kang, J. Am. Chem. Soc. 135, 9733 (2013).

    Article  Google Scholar 

  16. S.M. Xu, S.K. Das, and L.A. Archer, Rsc. Adv. 3, 6656 (2013).

    Article  Google Scholar 

  17. Y.L. Liu, R. Wang, Y. Lyu, H. Li, and L.Q. Chen, Energy Environ. Sci. 7, 677 (2014).

    Article  Google Scholar 

  18. X. Li, S.X. Yang, N.N. Feng, P. He, and H.S. Zhou, Chin. J. Catal. 37, 1016 (2016).

    Article  Google Scholar 

  19. Z.J. Xie, X. Zhang, Z. Zhang, and Z. Zhou, Adv. Mater. 29, 1605891 (2017).

    Article  Google Scholar 

  20. Y. Qiao, J. Yi, S.C. Wu, Y. Liu, S.X. Yang, P. He, and H.S. Zhou, Joule 1, 359 (2017).

    Article  Google Scholar 

  21. Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X.L. Zhou, Z.J. Xie, J.P. Wei, and Z. Zhou, Angew. Chem. Int. Ed. 54, 6550 (2015).

    Article  Google Scholar 

  22. X. Zhang, Q. Zhang, Z. Zhang, Y. Chen, Z.J. Xie, J.P. Wei, and Z. Zhou, Chem. Commun. 51, 14636 (2015).

    Article  Google Scholar 

  23. D. Aurbach, Y. Gofer, M. Ben-Zion, and P. Aped, J. Electroanal. Chem. 339, 451 (1992).

    Article  Google Scholar 

  24. D. Aurbach and O. Chusid, J. Electrochem. Soc. 140, L155 (1993).

    Article  Google Scholar 

  25. S.X. Yang, Y. Qiao, P. He, Y.J. Liu, Z. Cheng, J.J. Zhu, and H.S. Zhou, Energy Environ. Sci. 10, 972 (2017).

    Article  Google Scholar 

  26. W.Q. Ma, S.S. Lu, X.F. Lei, X.Z. Liu, and Y. Ding, J. Mater. Chem. A 6, 20829 (2018).

    Article  Google Scholar 

  27. Y.Y. Hou, J.Z. Wang, L.L. Liu, Y.Q. Liu, S.L. Chou, D.Q. Shi, H.K. Liu, Y.P. Wu, W.M. Zhang, and J. Chen, Adv. Funct. Mater. 56, 6970 (2017).

    Google Scholar 

  28. L. Qie, Y. Lin, J.W. Connell, J. Xu, and L.M. Dai, Angew. Chem. Int. Ed. 54, 6550 (2017).

    Google Scholar 

  29. S.M. Xu, Z.C. Ren, X. Liu, X. Liang, K.X. Wang, and J.S. Chen, Energy Storage Materials 15, 291 (2018).

    Article  Google Scholar 

  30. Z. Zhang, Z.W. Zhang, P.F. Liu, Y.P. Xie, K.Z. Cao, and Z. Zhou, J. Mater. Chem. A 6, 3218 (2018).

    Article  Google Scholar 

  31. X. Zhang, C.Y. Wang, H.H. Li, X.G. Wang, Y.N. Chen, Z.J. Xie, and Z. Zhou, J. Mater. Chem. A 6, 2792 (2018).

    Article  Google Scholar 

  32. Z. Zhang, X.G. Wang, X. Zhang, Z.J. Xie, Y.N. Chen, L.P. Ma, Z.Q. Peng, and Z. Zhou, Adv. Sci. 5, 1700567 (2018).

    Article  Google Scholar 

  33. C.Y. Wang, Q.M. Zhang, X. Zhang, X.G. Wang, Z.J. Xie, and Z. Zhou, Small 14, 1800641 (2018).

    Article  Google Scholar 

  34. S.W. Li, Y. Dong, J.W. Zhou, Y. Liu, J.M. Wang, X. Gao, Y.Z. Han, P.F. Qi, and B. Wang, Energy Environ. Sci. 11, 1318 (2018).

    Article  Google Scholar 

  35. Y.J. Mao, C. Tang, Z.C. Tang, J. Xie, Z. Chen, J. Tu, G.S. Cao and X.B. Zhao, Energy Storage Materials. https://doi.org/10.1016/j.ensm.2018.08.011 (2018).

  36. L.L. Zhang, Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, and L.M. Wang, Chin. Sci. Bull. 57, 4210 (2012).

    Article  Google Scholar 

  37. H.G. Jung, J. Hassoun, J.B. Park, Y.K. Sun, and B. Scrosati, Nat. Chem. 4, 579 (2012).

    Article  Google Scholar 

  38. S.A. Freunberger, Y. Chen, N.E. Drewett, L.J. Hardwick, F. Barde, and P.G. Bruce, Angew. Chem. Int. Ed. 50, 8609 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (Grant Nos. 21701145, 21701146, 21671176) and the China Postdoctoral Science Foundation (Grant No. 2017M610459).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingchao Liu or Zhongjun Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, D., Ma, S., Lu, Y. et al. High-Performance Li-CO2 Batteries with α-MnO2/CNT Cathodes. J. Electron. Mater. 48, 4653–4659 (2019). https://doi.org/10.1007/s11664-019-07250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07250-2

Keywords

Navigation