Skip to main content
Log in

Growth and Characterization of a Nonlinear Optical Material: l-Histidine-Doped Imidazolinium l-Tartrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Imidazolinium l-tartrate (IMLT) crystals and l-histidine-doped IMLT crystals were grown by slow evaporation technique at room temperature. The powder x-ray diffraction technique confirms the lattice parameters and shifts in the peak positions attributed to the dopant l-histidine. The Fourier transform infrared (FTIR) spectrum reveals the assignments of characteristic bondings present in the grown crystals. The frequency-dependent dielectric constant and dielectric loss of pure and l-histidine-doped IMLT crystals have been investigated by the dielectric measurements. Doping has improved the optical parameters and was studied using UV–Vis-near infrared (NIR) spectral studies. The cut-off wavelengths of pure and 1 mol.% l-histidine-doped IMLT crystals were observed at 234 nm and 229 nm, respectively. The etching study examines the growth mechanism and surface morphology of the pure and l-histidine-doped IMLT crystals. The carbon-hydrogen-nitrogen (CHN) analysis conveys the percentage of carbon, hydrogen and nitrogen elements present in pure and l-histidine-doped IMLT crystals. The consequences of doping l-histidine in IMLT single crystal and their dominance in various properties of the crystal grown in aqueous solution by slow evaporation technique have been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Pattanaboonmee, P. Ramasamy, R. Yimnirun, and P. Manyum, J. Cryst. Growth 314, 196 (2011).

    Article  Google Scholar 

  2. M. Prakash, D. Geetha, M. Lydia Caroline, and P.S. Ramesh, Spectrochim. Acta A 83, 461 (2011).

    Article  Google Scholar 

  3. N. Elavarasu, S. Karuppusamy, S. Muralidharan, M. Anantharaja, and R. Gopalakrishnan, Opt. Mater. 46, 141 (2015).

    Article  Google Scholar 

  4. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, and M. Hong, CrystEngComm 15, 2157 (2013).

    Article  Google Scholar 

  5. S. Suresh, J. Electron. Mater. 45, 5904 (2016).

    Article  Google Scholar 

  6. T. Prasanyaa, M. Haris, V. Mathivanan, M. Senthilkumar, T. Mahalingam, and V. Jayaramakrishnan, Mater. Chem. Phys. 147, 433 (2014).

    Article  Google Scholar 

  7. S.M. Azhar, M. Anis, S.S. Hussaini, S. Kalainathan, M.D. Shirsat, and G. Rabbani, Opt. Laser Technol. 87, 11 (2017).

    Article  Google Scholar 

  8. A. Kumaresh, R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, J. Cryst. Growth 401, 874 (2014).

    Article  Google Scholar 

  9. K. Meena, K. Muthu, V. Meenatchi, M. Rajasekar, G. Bhagavannarayana, and S.P. Meenakshisundaram, Spectrochim. Acta A 124, 663 (2014).

    Article  Google Scholar 

  10. P. Singh, M. Hasmuddin, M. Shakir, N. Vijayan, M.M. Abdullah, V. Ganesh, and M.A. Wahab, Mater. Chem. Phys. 142, 154 (2013).

    Article  Google Scholar 

  11. P. Singh, M. Hasmuddin, N. Vijayan, M.M. Abdullah, M. Shakir, and M.A. Wahab, Optik 124, 1609 (2013).

    Article  Google Scholar 

  12. A. Mohd, G.G. Muley, M.D. Shirsat, and S. Hussaini, Cryst. Res. Technol. 50, 372 (2015).

    Article  Google Scholar 

  13. K. Mohanraj, D. Balasubramanian, and N. Jhansi, Opt. Laser Technol. 96, 318 (2017).

    Article  Google Scholar 

  14. G. Vadivelan, V. Murugesan, M. Saravanabhavan, and M. Sekar, Optik 140, 571 (2017).

    Article  Google Scholar 

  15. P. Karuppasamy, M. Senthil Pandian, P. Ramasamy, and S. Verma, Opt. Mater. 79, 152 (2018).

    Article  Google Scholar 

  16. P. Karuppasamy, M. Senthil Pandian, P. Ramasamy, and S.K. Das, Optik 156, 707 (2018).

    Article  Google Scholar 

  17. A. Senthil and P. Ramasamy, J. Cryst. Growth 312, 276 (2010).

    Article  Google Scholar 

  18. M.R. Jagadeesh, H.M. Suresh Kumar, and R. Ananda Kumari, Optik 126, 4014 (2015).

    Article  Google Scholar 

  19. D. Sathya and V. Sivashankar, Optik 126, 5873 (2015).

    Article  Google Scholar 

  20. T.P. Srinivasan, R. Indirajith, and R. Gopalakrishnan, J. Cryst. Growth 312, 542 (2010).

    Article  Google Scholar 

  21. V. Sivasubramani, M. Senthil Pandian, K. Boopathi, and P. Ramasamy, Mater. Res. Innov. 22, 128 (2018).

    Article  Google Scholar 

  22. F. Akhtar and J. Podder, J. Cryst. Process Technol. 1, 55 (2011).

    Article  Google Scholar 

  23. M. Senthil Pandian, N. Balamurugan, G. Bhagavannarayana, and P. Ramasamy, J. Cryst. Growth 310, 4143 (2008).

    Article  Google Scholar 

  24. G. Bhuvaneswari, L. Guru Prasad, and N. Prabavathi, Optik 166, 307 (2018).

    Article  Google Scholar 

  25. M. Krishna Mohan, K. Jagannathan, S. Ponnusamy, and C. Muthamizhchelvan, J. Phys. Chem. Solids 72, 1273 (2011).

    Article  Google Scholar 

  26. P.V. Dhanaraj, N.P. Rajesh, J. Kalyana Sundar, S. Natarajan, and G. Vinitha, Mater. Chem. Phys. 129, 457 (2011).

    Article  Google Scholar 

  27. T.C. Sabari Girisun, S. Dhanuskodi, and G. Vinitha, Mater. Chem. Phys. 129, 9 (2011).

    Article  Google Scholar 

  28. P. Karuppasamy, M. Senthil Pandian, P. Ramasamy, and S. Verma, Opt. Mater. 79, 152 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (P. Dhivya) is thankful to the TEQIP-III, PSG College of Technology (TEQIP/NoA/ 17 dated 25.11.2017) for the financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arun Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhivya, P., Arun Kumar, R., Theivasanthi, T. et al. Growth and Characterization of a Nonlinear Optical Material: l-Histidine-Doped Imidazolinium l-Tartrate. J. Electron. Mater. 48, 4432–4442 (2019). https://doi.org/10.1007/s11664-019-07218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07218-2

Keywords

Navigation