Skip to main content

Advertisement

Log in

Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sb/ZnWO4/r-GO nanocomposite has been prepared by a single step solvothermal method. The crystal structure of the prepared nanocomposite has been characterized using a powder x-ray diffractometer (XRD). The optical properties of the prepared nanocomposite were studied using UV–visible spectroscopy and photoluminescence. The energy band gap of 3.52 eV is obtained for the ZWS-5 nanocomposite using Tauc plots. For both Sb/ZnWO4 and Sb/ZnWO4/r-GO nanocomposite XRD shows the monoclinic Wolframite structure. The supercapacitor performance of the prepared samples was carried out using electrochemical techniques such as cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The nanocomposite ZWS-5 exhibits a specific capacitance of 102 F/g, which is higher than pristine ZWS specific capacitance of 64 F/g. Both ZWS and ZWS-5 electrodes show good capacitance retention proficiency even after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Shi, S. Xiong, W. Fangfang, J. Bai, Y. Chu, H. Mao, J. Feng, and B. Xi, Eur. J. Inorg. Chem. 2017, 734 (2017).

    Article  Google Scholar 

  2. Y. Yang, J. Zhu, W. Shi, J. Zhou, D. Gong, G. Shaozhen, L. Wang, X. Zhi, and L. Binan, Mater. Lett. 177, 34 (2016).

    Article  Google Scholar 

  3. J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, J. Energy Storage 17, 224 (2018).

    Article  Google Scholar 

  4. A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016).

    Article  Google Scholar 

  5. T. Purkait, G. Singh, D. Kumar, M. Singh, and R.S. Dey, Sci. Rep. 8, 640 (2018).

    Article  Google Scholar 

  6. Q. Ke and J. Wang, J. Materiomics 2, 37 (2016).

    Article  Google Scholar 

  7. R. Boddula, R. Bolagam, and P. Srinivasan, Ionics 24, 1467 (2018).

    Article  Google Scholar 

  8. W. Yu and C. Cao, Sci. China Mater. 61, 1517 (2018).

    Article  Google Scholar 

  9. T. Hao, W. Wang, and Yu Dan, J. Electron. Mater. 47, 4108 (2018).

    Article  Google Scholar 

  10. Q. Meng, K. Cai, Y. Chen, and L. Chen, Nano Energy 36, 268 (2017).

    Article  Google Scholar 

  11. G.A. Snook, P. Kao, and A.S. Best, J. Power Sour. 196, 1–12 (2011).

    Article  Google Scholar 

  12. I. Shown, A. Ganguly, L.-C. Chen, and K.-H. Chen, Energy Sci. Eng. 3, 2 (2015).

    Article  Google Scholar 

  13. K.D. Fong, T. Wang, and S.K. Smoukov, Sustain. Energy Fuels 1, 1857 (2017).

    Article  Google Scholar 

  14. C.C. Chang and T. Imae, ACS Sustainable Chemistry & Engineering 6, 5162 (2018).

    Article  Google Scholar 

  15. Y.N. Sudhakar and M. Selvakumar, Ionics 22, 1729 (2016).

    Article  Google Scholar 

  16. T.P. Tran and Q.H. Do, J. Electron. Mater. 46, 6056 (2017).

    Article  Google Scholar 

  17. S. Ghosh, S.M. Jeong, and S.R. Polaki, Korean J. Chem. Eng. 35, 1389 (2018).

    Article  Google Scholar 

  18. Y. Liu, L. Liu, L. Kong, L. Kang, and F. Ran, Electrochim. Acta 211, 469 (2016).

    Article  Google Scholar 

  19. J. Theerthagiri, G. Durai, K. Karuppasamy, P. Arunachalam, V. Elakkiya, P. Kuppusami, T. Maiyalagan, and H.S. Kim, J. Ind. Eng. Chem. 67, 12 (2018).

    Article  Google Scholar 

  20. M.-S. Balogun, W. Qiu, W. Wang, P. Fang, L. Xihong, and Y. Tong, J. Mater. Chem. A 3, 1364 (2015).

    Article  Google Scholar 

  21. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H.J. Fan, Adv. Sci. 3, 1500286 (2016).

    Article  Google Scholar 

  22. P. Liu, Y. Deng, Q. Zhang, H. Zhonghua, X. Zijie, Y. Liu, M. Yao, and Z. Ai, Ionics 21, 2797 (2015).

    Article  Google Scholar 

  23. H. Zhang, J. Liu, Z. Tian, Y. Ye, Y. Cai, C. Liang, and K. Terabe, Carbon 100, 590 (2016).

    Article  Google Scholar 

  24. Y. Zhao, W. Wang, D.-B. Xiong, G. Shao, W. Xia, Yu Shengxue, and F. Gao, Int. J. Hydrogen Energy 37, 19395 (2012).

    Article  Google Scholar 

  25. B. Krüner, C. Odenwald, A. Tolosa, A. Schreiber, M. Aslan, G. Kickelbick, and V. Presser, Sustain. Energy Fuels 1, 1588 (2017).

    Article  Google Scholar 

  26. M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, and Y. Gogotsi, Nat. Energy 2, 17105 (2017).

    Article  Google Scholar 

  27. A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, and R. Chandra, Ind. Eng. Chem. Res. 55, 9452–9458 (2016).

    Article  Google Scholar 

  28. B. Guan, H. Lingling, G. Zhang, D. Guo, F. Tao, J. Li, H. Duan, C. Li, and Q. Li, RSC Adv. 4, 4212 (2014).

    Article  Google Scholar 

  29. V. Sharma, I. Singh, and A. Chandra, Sci. Rep. 8, 1307 (2018).

    Article  Google Scholar 

  30. L. Wang, G. Duan, J. Zhu, S.-M. Chen, X.-h. Liu, and S. Palanisamy, J. Colloid Interface Sci. 483, 73 (2016).

    Article  Google Scholar 

  31. M. Aliofkhazraei, A.S.H. Makhlouf, eds., Handbook of nanoelectrochemistry: Electrochemical synthesis methods, properties and characterization techniques (Springer, 2016).

  32. K. Zhang, L. Lin, S. Hussain, and S. Han, J. Mater. Sci. Mater. Electron. 29, 12871 (2018).

    Article  Google Scholar 

  33. S. Sun, G. Jiang, Y. Liu, Yu Bo, and U. Evariste, J. Electron. Mater. 47, 5993 (2018).

    Article  Google Scholar 

  34. X. Zhou, M. Wang, J. Lian, and Y. Lian, Sci. China Technol. Sci. 57, 278 (2014).

    Article  Google Scholar 

  35. C. Chen, W. Fan, T. Ma, and F. Xuwang, Ionics 20, 1489 (2014).

    Article  Google Scholar 

  36. J.V. Moreira, P.W. May, E.J. Corat, A.C. Peterlevitz, R.A. Pinheiro, and H. Zanin, J. Electron. Mater. 46, 929 (2017).

    Article  Google Scholar 

  37. J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, and H. Zanin, J. Electron. Mater. 45, 5781 (2016).

    Article  Google Scholar 

  38. S. Wang, F. Ma, H. Jiang, Y. Shao, W. Yongzhong, and X. Hao, ACS Appl. Mater. Interfaces. 10, 19588 (2018).

    Article  Google Scholar 

  39. S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, and T. Kuila, RSC Adv. 6, 1380 (2016).

    Article  Google Scholar 

  40. S. Saha, M. Jana, P. Samanta, N.C. Murmu, N.H. Kim, T. Kuila, and J.H. Lee, Mater. Chem. Phys. 190, 153 (2017).

    Article  Google Scholar 

  41. M. Sreejesh, N.M. Huang, and H.S. Nagaraja, Electrochim. Acta 160, 94 (2015).

    Article  Google Scholar 

  42. Y. Li, F. Zhou, Z. Zhu, and W. Fan, Appl. Surf. Sci. 467–468, 819 (2019).

    Article  Google Scholar 

  43. J. Jin, Yu Jiaguo, D. Guo, C. Cui, and W. Ho, Small 11, 5262 (2015).

    Article  Google Scholar 

  44. M.A. Velasco-Soto, S.A. Pérez-García, J. Alvarez-Quintana, Y. Cao, L. Nyborg, and L. Licea-Jiménez, Carbon 93, 967 (2015).

    Article  Google Scholar 

  45. K.Y. Lian, Y.F. Ji, X.F. Li, M.X. Jin, D.J. Ding, and Y. Luo, J. Phys. Chem. C 117, 6049 (2013).

    Article  Google Scholar 

  46. M. Singh, G. Kumar, N. Prakash, S.P. Khanna, P. Pal, and S.P. Singh, Semicond. Sci. Technol. 33, 045012 (2018).

    Article  Google Scholar 

  47. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, and A. Segura, EPL (Europhys. Lett.) 83, 37002 (2008).

    Article  Google Scholar 

  48. P. Siriwong, T. Thongtem, A. Phuruangrat, and S. Thongtem, CrystEngComm 13, 1564 (2011).

    Article  Google Scholar 

  49. J. Lin, J. Lin, and Y. Zhu, Inorg. Chem. 46, 8372 (2007).

    Article  Google Scholar 

  50. M.M.J. Sadiq, U.S. Shenoy, and D.K. Bhat, RSC Adv. 6, 61821 (2016).

    Article  Google Scholar 

  51. M.J.S. Mohamed and D.K. Bhat, AIMS Mater. Sci. 4, 158 (2017).

    Article  Google Scholar 

  52. K. Bindu, K. Sridharan, K.M. Ajith, H.N. Lim, and H.S. Nagaraja, Electrochim. Acta 217, 139 (2016).

    Article  Google Scholar 

  53. S.R. Ede, A. Ramadoss, U. Nithiyanantham, S. Anantharaj, and S. Kundu, Inorg. Chem. 54, 3851 (2015).

    Article  Google Scholar 

  54. S. Saranya, S.T. Senthilkumar, K.V. Sankar, and R.K. Selvan, J. Electroceram. 28, 220 (2012).

    Article  Google Scholar 

  55. J. Tang, J. Shen, N. Li, and M. Ye, J. Alloy. Compd. 666, 15 (2016).

    Article  Google Scholar 

  56. S. Saranya, R.K. Selvan, and N. Priyadharsini, Appl. Surf. Sci. 258, 4881 (2012).

    Article  Google Scholar 

  57. N. Goubard-Bretesché, O. Crosnier, C. Payen, F. Favier, and T. Brousse, Electrochem. Commun. 57, 61 (2015).

    Article  Google Scholar 

  58. M. Sreejesh, S. Dhanush, F. Rossignol, and H.S. Nagaraja, Ceram. Int. 43, 4895 (2017).

    Article  Google Scholar 

  59. Y. Li Sun, C. Tian, Y. Yang, L. Wang, J. Yin, J. Ma, R. Wang, and F. Honggang, Chemsuschem 7, 1637 (2014).

    Article  Google Scholar 

  60. D. Deng, N. Chen, X. Xiao, D. Shangfeng, and Y. Wang, Ionics 23, 121 (2017).

    Article  Google Scholar 

  61. K.S. Bhat, S. Shenoy, H.S. Nagaraja, and K. Sridharan, Electrochim. Acta 248, 188 (2017).

    Article  Google Scholar 

  62. K. Brijesh, K. Bindu, D. Shanbhag and H. S. Nagaraja, Int. J. Hydrogen Energy 44(2), 757–767 (2018). https://doi.org/10.1016/j.ijhydene.2018.11.022.

Download references

Acknowledgments

Authors would like to thank DST-FIST India for providing the XRD facility of the Department of Physics NITK Surathkal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Brijesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brijesh, K., Nagaraja, H.S. Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes. J. Electron. Mater. 48, 4188–4195 (2019). https://doi.org/10.1007/s11664-019-07185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07185-8

Keywords

Navigation