Skip to main content
Log in

Design and Simulation of a Frequency Doubler Using Graphene Nanoribbon Field Effect Transistors for Communication Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Modeling of a graphene nanoribbon field effect transistor (GNRFET) as a frequency doubler has been extensively explored for developing future communication applications. For its analysis, different types of modifications are applied to the GNRFET model simulated in a Hewlett simulation program with an integrated circuit. The model is demonstrated for its frequency response and conversion gain. It uses an intrinsic GNRFET for frequency doubling which clearly shows a distortionless sinusoidal output at a peak frequency of 20.6 MHz for an applied input of 10.3 MHz. However, after applying doping at different fractions of 0.3%, 3% and 30% in the transistor model, signal decay appears at 30% doping fractions. Results are also shown for increasing the number of dimers (N), increasing the number of channels for conduction and the impact of changing the dielectric constant on the doubler model performance. It is found that as the channel width increases, an increase in the conversion gain from − 26.05 dB to − 20 dB results from an increase in N from 8 to 20 dimer lines. Further, if four graphene nanoribbon (GNR) channels are used in the doubler operation instead of one GNR channel, then a high conversion gain of − 16.47 dB as compared to − 26.05 dB for an individual GNR channel is also calculated. Regarding the impact of different dielectrics, it is revealed that, similar to a conventional transistor, a graphene transistor with a high-K-value dielectric presents the highest gain, but with a high distortion in the output signal. However, using a conventional silicon dioxide (SiO2) dielectric having a low K value gives lower conversion gain, but ideal frequency doubling in the output is attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, IEEE Trans. Nanotechnol. 10, 727 (2011).

    Article  Google Scholar 

  2. T. Palacios, A. Hsu, and H. Wang, IEEE Commun. Mag. 48, 122 (2010).

    Article  Google Scholar 

  3. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  Google Scholar 

  4. P. Sharma, S. Singh, S. Gupta, and I. Kaur, J. Mater. Sci. Mater. Electron. 28, 7668 (2017).

    Article  Google Scholar 

  5. M.E. Ramón, K.N. Parrish, S.F. Chowdhury, C.W. Magnuson, H.C. Movva, R.S. Ruoff, S.K. Banerjee, and D. Akinwande, IEEE Trans. Nanotechnol. 11, 877 (2012).

    Article  Google Scholar 

  6. H. Wang, A. Hsu, K.K. Kim, J. Kong, and T. Palacios, in Proceedings of the IEEE Electron Devices Meeting (IEDM) (IEEE, 2010), pp 23.6.1–23.6.4.

  7. H. Wang, D. Nezich, J. Kong, and T. Palacios, IEEE Electron Device Lett. 30, 547 (2009).

    Article  Google Scholar 

  8. C. Cheng, B. Huang, X. Mao, Z. Zhang, Z. Zhang, Z. Geng, P. Xue, and H. Chen, Sci. Rep. 7, 46605 (2017).

    Article  Google Scholar 

  9. H. Wang, A. Hsu, J. Wu, J. Kong, and T. Palacios, IEEE Electron Device Lett. 31, 906 (2010).

    Article  Google Scholar 

  10. C. Chen, S. Lee, V.V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, Nat. Nanotechnol. 8, 923 (2013).

    Article  Google Scholar 

  11. Y.-Y. Chen, A. Rogachev, A. Sangai, G. Iannaccone, G. Fiori, D. Chen, in Proceedings of the Design, Automation and Test in Europe (EDA Consortium) (2013), pp 1789–1794.

  12. Z. Hu, D. Prasad Sinha, J. Ung Lee, and M. Liehr, J. Appl. Phys. 115, 194507 (2014).

    Article  Google Scholar 

  13. P. Vimala and N.B. Balamurugan, J. Electr. Eng. Technol. 9, 649 (2014).

    Article  Google Scholar 

  14. H. Wang, A.L. Hsu, and T. Palacios, IEEE Microw. Mag. 13, 114 (2012).

    Article  Google Scholar 

  15. J.W. Chung, W.E. Hoke, E.M. Chumbes, and T. Palacios, IEEE Electron Device Lett. 31, 195 (2010).

    Article  Google Scholar 

  16. Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2008).

    Article  Google Scholar 

  17. M.E. Ramón, K.N. Parrish, S.F. Chowdhury, C.W. Magnuson, H.C. Movva, R.S. Ruoff, S.K. Banerjee, and D. Akinwande, IEEE Trans. Nanotechnol. 11, 877 (2012).

    Article  Google Scholar 

  18. M. Gholipour, Y.-Y. Chen, A. Sangai, N. Masoumi, and D. Chen, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2, 650 (2016).

    Article  Google Scholar 

  19. H. Liu, Y. Liu, and D. Zhu, J. Mater. Chem. 21, 3335 (2011).

    Article  Google Scholar 

  20. S.S. Chauhan, P. Srivastava, and A.K. Shrivastava, Solid State Commun. 154, 69 (2013).

    Article  Google Scholar 

  21. Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo, and L. Peng, Nanoscale 2015, 10954 (2015).

    Article  Google Scholar 

  22. J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.-N. Mei, J. Shi, Z. Gao, and J. Lu, Sci. Rep. 3, 1314 (2013).

    Article  Google Scholar 

  23. W.-X. Wang, M. Zhou, X. Li, S.-Y. Li, X. Wu, W. Duan, and L. He, Phys. Rev. B 93, 241403 (2016).

    Article  Google Scholar 

  24. D.Y. Jung, S.Y. Yang, H. Park, W.C. Shin, J.G. Oh, B.J. Cho, and S.-Y. Choi, Nano Converg. 2, 11 (2015).

    Article  Google Scholar 

  25. P. Sharma, S. Singh, S. Gupta, and I. Kaur, J. Mater. Sci. Mater. Electron. 29, 2883 (2018).

    Article  Google Scholar 

  26. L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, and X. Duan, Adv. Mater. 22, 1941 (2010).

    Article  Google Scholar 

  27. I. Meric, C.R. Dean, N. Petrone, L. Wang, J. Hone, P. Kim, and K.L. Shepard, in Proceedings of the IEEE (2013), pp. 1609–1619.

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetika Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Gupta, S. & Kaur, I. Design and Simulation of a Frequency Doubler Using Graphene Nanoribbon Field Effect Transistors for Communication Devices. J. Electron. Mater. 48, 3043–3049 (2019). https://doi.org/10.1007/s11664-019-07068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07068-y

Keywords

Navigation