Skip to main content

Advertisement

Log in

Assessment of a Truck Localized Air Conditioning System with Thermoelectric Coolers

  • Progress and Challenges for Emerging Integrated Energy Modules
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In vehicles, the power consumption of the traditional air conditioning system used to cool an entire cabin reaches 3–4 kW. In general, there is only one driver in the vehicle, so adjusting the local thermal environment just around the driver can avoid much energy waste. A localized air conditioning system based on thermoelectric cooling (TEC) devices was constructed and assessed in an experimental study to analyze its working characteristics under practical operating conditions. The relationship between the refrigeration performance and the operating current of the devices was studied, and a bench test was carried out to evaluate the performance of the device and the accuracy of the simulation. A heavy-duty truck cab was selected for the application of the TEC system. The temperature distribution of the cab and the human body’s surface was analyzed by the method of computational fluid dynamics to predict the performance of the whole system. The driver’s thermal comfortwas analyzed based on equivalent temperature and thermal comfort deviation. Under given conditions, most body parts were in the comfort temperature range. The results indicated that the system can meet the thermal comfort requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chen, N. Li, Y. Hiroshi, and J. Guan, Energy Build. 43, 1063 (2011).

    Article  Google Scholar 

  2. S. Murshed and N.D. Castro, Renew. Sust. Energy Rev. 78, 821 (2017).

    Article  Google Scholar 

  3. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, Energy Convers. Manag. 65, 351 (2013).

    Article  Google Scholar 

  4. H. Lv, X.D. Wang, T.H. Wang, and C.H. Cheng, Appl. Energy 164, 501 (2016).

    Article  Google Scholar 

  5. H.L. Tsai and P.T. Le, Energy Convers. Manag. 118, 170 (2016).

    Article  Google Scholar 

  6. L. Zhu, H. Tan, and J. Yu, Energy Convers. Manag. 76, 685 (2013).

    Article  Google Scholar 

  7. X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag. 90, 121 (2015).

    Article  Google Scholar 

  8. T. Ma, P. Jaideep, E. Srinath, H. Scott, D. Samruddhi, and Q.W. Wang, Appl. Energy 185, 1343 (2017).

    Article  Google Scholar 

  9. C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).

    Article  Google Scholar 

  10. X. Liu, Y.D. Deng, K. Zhang, M. Xu, Y. Xu, and C.Q. Su, Appl. Therm. Eng. 71, 364 (2014).

    Article  Google Scholar 

  11. Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energy Convers. Manag. 2016, 266 (2016).

    Article  Google Scholar 

  12. R. Shen, X.L. Gou, H.Y. Xu, and K.R. Qiu, Appl. Energ. 203, 808 (2017).

    Article  Google Scholar 

  13. K. Nicholas and Y.L. Zhang, Energy Convers. Manag. 121, 224 (2016).

    Article  Google Scholar 

  14. S. Richard, M.A. Wijewardane and Z.J. Yang, Appl. Therm. Eng. 112, 1433 (2016).

    Google Scholar 

  15. J.L. Niu, L.Z. Zhang, and H.G. Zuo, Energy Build. 34, 487–495 (2002).

    Article  Google Scholar 

  16. X.Q. Sun, L.F. Zhang, and S.G. Liao, Appl. Therm. Eng. 116, 433 (2017).

    Article  Google Scholar 

  17. L.M. Shen, H.X. Chen, F. Xiao, Y.X. Yang, and S.W. Wang, Energy Convers. Manag. 80, 39 (2014).

    Article  Google Scholar 

  18. S.A. Abdul-Wahab, E. Ali, and A.D.M. Ali, et al., Renew. Energy 34, 30 (2009).

    Article  Google Scholar 

  19. M. Gao and D.M. Rowe, Appl. Energy 83, 133 (2006).

    Article  Google Scholar 

  20. G. Mark, L.B. Jiang, and R. Saffa, Int. J. Energy Res. 34, 776 (2010).

    Google Scholar 

  21. Y.M. Zeki, Energy Build. 113, 51 (2016).

    Article  Google Scholar 

  22. D.L. Zhao and G. Tan, Appl. Therm. Eng. 66, 15 (2014).

    Article  Google Scholar 

  23. K. Chunkyu, C.W. Lee, F. Lee, K. Jungho and Y. Shin, SAE 2012 World Congress and Exhibition (2012).

  24. Á.G. Miranda, T.S. Chen, and C.W. Hong, Energy 59, 633 (2013).

    Article  Google Scholar 

  25. G. Debashis, M.Y. Wang, W. Edward, K.H. Chen, K. Shailendra, and T.Y. Han, SAE International Journal of Passenger Cars- Mechanical Systems 5, 885 (2012)

  26. K.H. Chen, B. Jeffrey, M.Y. Wang M, G. Debashis, W. Edward, and C. Sourav, SAE 2015 World Congress and Exhibition (2015).

  27. M.S. Raut and D.P.V. Walke, Int. J. Eng. Sci. Technol. 4, 2381 (2012).

    Google Scholar 

  28. R.C. Allen, D.P. Scott, J.S. Tony, and A.H. Mark, SAE Int. J. Aerosp. 2, 263 (2009).

    Article  Google Scholar 

  29. M.S. Jang, C.D. Koh, and I.S. Moon, Build. Environ. 42, 55 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51805387), the 111 Project (B17034), and the Excellent Dissertation Cultivation Funds of Wuhan University of Technology (Grant No. 2016-YS-049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Su, C., Yuan, X. et al. Assessment of a Truck Localized Air Conditioning System with Thermoelectric Coolers. J. Electron. Mater. 48, 5453–5463 (2019). https://doi.org/10.1007/s11664-019-06983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06983-4

Keywords

Navigation