Skip to main content

Advertisement

Log in

Probing the Electrochemical Properties of Flower Like Mesoporous MoS2 in Different Aqueous Electrolytes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, flower-like mesoporous MoS2 has been synthesized via a one step hydrothermal approach. The electrochemical performance of synthesized flower-like MoS2 nanostructures for supercapacitor applications has been probed via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy in 1 M H2SO4 (acidic electrolyte), 1 M Na2SO4 (neutral electrolyte) and 2 M KOH (basic electrolyte) electrolytes using a three electrodes configuration. On the basis of electrochemical measurements, it has been observed that as-prepared flower-like MoS2 exhibits specific capacitances of 225 F g−1, 205 F g−1 and 123 F g−1 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes at 1 A g−1, respectively. Moreover, for the MoS2 electrode the diffusion coefficients in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes are found to be 8.52 × 10−10 cm2 s−1, 5.41 × 10−10 cm2 s−1 and 8.35 × 10−10 cm2 s−1, respectively. Further, the relaxation time constants (τ), which represent how quick a supercapacitor system can deliver stored energy at high power, are found to be 37 ms, 77 ms and 1.49 s for as synthesized MoS2 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes, respectively. However, the capacity retention/coulombic efficiency of a MoS2 electrode in 1 M H2SO4, 1 M Na2SO4 and 2MKOH is found to be ∼ 30%/89%, 89%/94% and 86%/92%, respectively, after 1000 successive cycles at 2 A g−1. Our results suggest that a pristine flower like MoS2 is a good material to design a high performance supercapacitor device, which exhibits stable electrochemical performance in 1 M Na2SO4 electrolytes. The detailed electrochemical behavior of as synthesized samples has been thoroughly described in this paper. We believe our findings would be helpful in the designing of flower-like MoS2 based practical high performance supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xiao, S. Yao, H. Liu, F. Qu, X. Zhang, and X. Wu, Prog. Nat. Sci. Mater. Int. 26, 271 (2016).

    Article  Google Scholar 

  2. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).

    Article  Google Scholar 

  3. S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, ACS Appl. Mater. Interfaces. 5, 2188 (2013).

    Article  Google Scholar 

  4. R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, R. Omar, J.G. Manjunatha, M.M. Ishak, N.H. Basri, and B.N.M. Dolah, Int. J. Electrochem. Sci. 8, 257 (2013).

    Google Scholar 

  5. N. Kumar, Y.C. Yu, Y.H. Lu, and T.Y. Tseng, J. Mater. Sci. 51, 2320 (2016).

    Article  Google Scholar 

  6. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera, Chem. Rev. 110, 6474 (2010).

    Article  Google Scholar 

  7. A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources 157, 11 (2006).

    Article  Google Scholar 

  8. H. Jiang, P.S. Lee, and C. Li, Energy Environ. Sci. 6, 41 (2013).

    Article  Google Scholar 

  9. N. Kumar, A. Kumar, S. Chandrasekaran, and T.Y. Tseng, J. Clean Energy Technol. 6, 51 (2018).

    Article  Google Scholar 

  10. S.S. Karade, D.P. Dubal, and B.R. Sankapal, RSC Adv. 6, 39159 (2016).

    Article  Google Scholar 

  11. D.T. Dam, X. Wang, and J.M. Lee, ACS Appl. Mater. Interfaces 6, 8246 (2014).

    Article  Google Scholar 

  12. N. Kumar, C.W. Huang, P.J. Yen, W.W. Wu, K.H. Wei, and T.Y. Tseng, RSC Adv. 6, 60578 (2016).

    Article  Google Scholar 

  13. F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnona, and N. Manyala, RSC Adv. 5, 107482 (2015).

    Article  Google Scholar 

  14. M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  Google Scholar 

  15. Z.S. Iro, C. Subramani, and S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016).

    Article  Google Scholar 

  16. B. Hsia, Ph.D. Thesis, University of California, Berkeley (2013).

  17. Q. Ke and J. Wang, J. Materiomics 2, 37 (2016).

    Article  Google Scholar 

  18. M.A. Bissetta, S.D. Worrall, I.A. Kinloch, and R.A.W. Dryfe, Electrochim. Acta 201, 30 (2016).

    Article  Google Scholar 

  19. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, and Y.W. Yang, Nanomaterials 5, 1667 (2015).

    Article  Google Scholar 

  20. L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, and P.M. Ajayan, Small 9, 2905 (2013).

    Article  Google Scholar 

  21. M.A. Bissett, I.A. Kinloch, and R.A.W. Dryfe, ACS Appl. Mater. Interfaces. 7, 17388 (2015).

    Article  Google Scholar 

  22. A. Ramadoss, T. Kim, G.S. Kima, and S.J. Kim, New J. Chem. 38, 2379 (2014).

    Article  Google Scholar 

  23. N. Zheng, X. Bu, and P. Feng, Nature 426, 428 (2003).

    Article  Google Scholar 

  24. K.J. Huang, L. Wang, Y.J. Liu, Y.M. Liu, H.B. Wang, T. Gan, and L.L. Wang, Int. J. Hydrog. Energy 38, 14027 (2013).

    Article  Google Scholar 

  25. L. Chen, F. Chen, N. Tronganh, M. Lu, and Y. Jiang, J. Mater. Res. 31, 3151 (2016).

    Article  Google Scholar 

  26. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  Google Scholar 

  27. S. Vaquero, J. Palma, M. Anderson, and R. Marcilla, Int. J. Electrochem. Sci. 8, 10293 (2013).

    Google Scholar 

  28. X. Zhou, B. Xu, Z. Lin, D. Shu, and L. Ma, J. Nanosci. Nanotechnol. 14, 7250 (2014).

    Article  Google Scholar 

  29. X. Wang, J. Ding, S. Yao, X. Wu, Q. Feng, Z. Wang, and B. Geng, J. Mater. Chem. A 2, 15958 (2014).

    Article  Google Scholar 

  30. N. Kanaujiya, N. Kumar, A.K. Srivastava, Y. Sharma, and G.D. Varma, J. Electroanal. Chem. 824, 226 (2018).

    Article  Google Scholar 

  31. X. Xie, C. Zhang, M.B. Wu, Y. Tao, W. Lv, and Q.H. Yang, Chem. Commun. 49, 11092 (2013).

    Article  Google Scholar 

  32. C. Wei, W. He, X. Zhang, S. Liu, C. Jin, S. Liu, and Z. Huang, RSC Adv. 5, 28662 (2015).

    Article  Google Scholar 

  33. M. Chen, Y. Dai, J. Wang, Q. Wang, Y. Wang, X. Cheng, and X. Yan, J. Alloys Compd. 696, 900 (2017).

    Article  Google Scholar 

  34. X. Li, A. Tang, J. Li, L. Guan, G. Dong, and F. Teng, Nanoscale Res. Lett. 11, 171 (2016).

    Article  Google Scholar 

  35. S. Han, K. Liu, L. Hu, F. Teng, P. Yu, and Y. Zhu, Sci. Rep. 7, 43599 (2017).

    Article  Google Scholar 

  36. S.V.P. Vattikuti and C. Byon, J. Nanomater. 2015, 1 (2015).

    Google Scholar 

  37. S. Kumar, V. Sharma, K. Bhattacharyya, and V. Krishnan, New J. Chem. 40, 5185 (2016).

    Article  Google Scholar 

  38. X. Zhu, C. Yang, F. Xiao, J. Wang, and X. Su, New J. Chem. 39, 683 (2015).

    Article  Google Scholar 

  39. W. Xu, T. Wang, Y. Yu, and S. Wang, J. Alloys Compd. 689, 460 (2016).

    Article  Google Scholar 

  40. J. Mohanraj, V. Velmuruga, S. Sathiyan, and S. Sivabalan, Opt. Commun. 406, 139 (2018).

    Article  Google Scholar 

  41. D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, and D. Xue, Nanoscale Res. Lett. 8, 129 (2013).

    Article  Google Scholar 

  42. R. Zhang, Y. Li, J. Qi, and D. Gao, Nanoscale Res. Lett. 9, 586 (2014).

    Article  Google Scholar 

  43. L. Cao, M. Lu, and H.L. Li, J. Electrochem. Soc. 152, A871 (2005).

    Article  Google Scholar 

  44. K. Xia, Q. Gao, J. Jiang, and J. Hu, Carbon 46, 1718 (2008).

    Article  Google Scholar 

  45. D. Saha, Y. Li, Z. Bi, J. Chen, J.K. Keum, D.K. Hensley, H.A. Grappe, H.M. Meyer, S. Dai, M.P. Paranthaman, and A.K. Naskar, Langmuir 30, 900 (2014).

    Article  Google Scholar 

  46. H.T. Das, K. Mahendraprabhu, T. Maiyalagan, and P. Elumalai, Sci. Rep. 7, 15342 (2017).

    Article  Google Scholar 

  47. H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, and H. Wan, J. Power Sources 248, 28 (2014).

    Article  Google Scholar 

  48. N. Kumar, A. Kumar, G.M. Huang, W.W. Wu, and T.Y. Tseng, Appl. Surf. Sci. 433, 1100 (2018).

    Article  Google Scholar 

  49. H. Wei, J. Zhu, S. Wu, S. Wei, and Z. Guo, Polymer 54, 1820 (2013).

    Article  Google Scholar 

  50. Y. Li, D. Chen, and R.A. Caruso, J. Mater. Chem. C 4, 10500 (2016).

    Article  Google Scholar 

  51. Rusi and S.R. Majid, PLoS ONE 11, 154566 (2016).

    Article  Google Scholar 

  52. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, J. Power Sources 216, 290 (2012).

    Article  Google Scholar 

  53. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhangd, and J. Zhangd, Chem. Soc. Rev. 44, 7484 (2015).

    Article  Google Scholar 

  54. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  Google Scholar 

  55. B. Tansel, J. Sager, T. Rector, J. Garland, F. Richard, S.L. Levine, M. Roberts, M. Hummerick, and J. Bauer, Sep. Purif. Technol. 51, 40 (2006).

    Article  Google Scholar 

  56. S. Chaudhari, D. Bhattacharjya, and J.S. Yu, RSC Adv. 3, 25120 (2013).

    Article  Google Scholar 

  57. R.S. Berry, S.A. Rice, and J. Ross, Physical Chemistry, 2nd ed. (New York: Wiley, 1980).

    Google Scholar 

  58. K.D. Collins, Biophys. J. 72, 65 (1997).

    Article  Google Scholar 

  59. C. Portet, P.L. Taberna, P. Simon, and C.L. Robert, Electrochim. Acta 49, 847 (2004).

    Article  Google Scholar 

  60. M.S. Halper and J.C. Ellenbogen, Supercapacitors: A Brief Overview, MITRE Nanosystems Group Report, McLean, VA (2006).

  61. E.R. Nightingale Jr., J. Phys. Chem. 63(9), 1381 (1959).

    Article  Google Scholar 

  62. A.G. Volkov, S. Paula, and D.W. Deamer, Bioelectrochem. Bioenerg. 42, 153 (1997).

    Article  Google Scholar 

  63. J.M. Soon and K.P. Loh, Electrochem. Solid State Lett. 10, 250 (2007).

    Article  Google Scholar 

  64. W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, and L. Tian, Materials 9, 783 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

Author N. Kanaujiya highly acknowledges MHRD (Govt. of India) for research fellowship. Author N. Kumar acknowledges the financial support from CSIR, New Delhi, India, for RA Fellowship under scheme No. 22(658)/14/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yogesh Sharma or G. D. Varma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaujiya, N., Kumar, N., Sharma, Y. et al. Probing the Electrochemical Properties of Flower Like Mesoporous MoS2 in Different Aqueous Electrolytes. J. Electron. Mater. 48, 904–915 (2019). https://doi.org/10.1007/s11664-018-6801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6801-9

Keywords

Navigation